| 1 | /* |
| 2 | |
| 3 | SDL_rotate.c: rotates 32bit or 8bit surfaces |
| 4 | |
| 5 | Shamelessly stolen from SDL_gfx by Andreas Schiffler. Original copyright follows: |
| 6 | |
| 7 | Copyright (C) 2001-2011 Andreas Schiffler |
| 8 | |
| 9 | This software is provided 'as-is', without any express or implied |
| 10 | warranty. In no event will the authors be held liable for any damages |
| 11 | arising from the use of this software. |
| 12 | |
| 13 | Permission is granted to anyone to use this software for any purpose, |
| 14 | including commercial applications, and to alter it and redistribute it |
| 15 | freely, subject to the following restrictions: |
| 16 | |
| 17 | 1. The origin of this software must not be misrepresented; you must not |
| 18 | claim that you wrote the original software. If you use this software |
| 19 | in a product, an acknowledgment in the product documentation would be |
| 20 | appreciated but is not required. |
| 21 | |
| 22 | 2. Altered source versions must be plainly marked as such, and must not be |
| 23 | misrepresented as being the original software. |
| 24 | |
| 25 | 3. This notice may not be removed or altered from any source |
| 26 | distribution. |
| 27 | |
| 28 | Andreas Schiffler -- aschiffler at ferzkopp dot net |
| 29 | |
| 30 | */ |
| 31 | #include "SDL_internal.h" |
| 32 | |
| 33 | #ifdef SDL_VIDEO_RENDER_SW |
| 34 | |
| 35 | #if defined(SDL_PLATFORM_WINDOWS) |
| 36 | #include "../../core/windows/SDL_windows.h" |
| 37 | #endif |
| 38 | |
| 39 | #include "SDL_rotate.h" |
| 40 | |
| 41 | #include "../../video/SDL_surface_c.h" |
| 42 | |
| 43 | // ---- Internally used structures |
| 44 | |
| 45 | /** |
| 46 | A 32 bit RGBA pixel. |
| 47 | */ |
| 48 | typedef struct tColorRGBA |
| 49 | { |
| 50 | Uint8 r; |
| 51 | Uint8 g; |
| 52 | Uint8 b; |
| 53 | Uint8 a; |
| 54 | } tColorRGBA; |
| 55 | |
| 56 | /** |
| 57 | A 8bit Y/palette pixel. |
| 58 | */ |
| 59 | typedef struct tColorY |
| 60 | { |
| 61 | Uint8 y; |
| 62 | } tColorY; |
| 63 | |
| 64 | /** |
| 65 | Number of guard rows added to destination surfaces. |
| 66 | |
| 67 | This is a simple but effective workaround for observed issues. |
| 68 | These rows allocate extra memory and are then hidden from the surface. |
| 69 | Rows are added to the end of destination surfaces when they are allocated. |
| 70 | This catches any potential overflows which seem to happen with |
| 71 | just the right src image dimensions and scale/rotation and can lead |
| 72 | to a situation where the program can segfault. |
| 73 | */ |
| 74 | #define GUARD_ROWS (2) |
| 75 | |
| 76 | /** |
| 77 | Returns colorkey info for a surface |
| 78 | */ |
| 79 | static Uint32 get_colorkey(SDL_Surface *src) |
| 80 | { |
| 81 | Uint32 key = 0; |
| 82 | if (SDL_SurfaceHasColorKey(src)) { |
| 83 | SDL_GetSurfaceColorKey(src, &key); |
| 84 | } |
| 85 | return key; |
| 86 | } |
| 87 | |
| 88 | // rotate (sx, sy) by (angle, center) into (dx, dy) |
| 89 | static void rotate(double sx, double sy, double sinangle, double cosangle, const SDL_FPoint *center, double *dx, double *dy) |
| 90 | { |
| 91 | sx -= center->x; |
| 92 | sy -= center->y; |
| 93 | |
| 94 | *dx = cosangle * sx - sinangle * sy; |
| 95 | *dy = sinangle * sx + cosangle * sy; |
| 96 | |
| 97 | *dx += center->x; |
| 98 | *dy += center->y; |
| 99 | } |
| 100 | |
| 101 | /** |
| 102 | Internal target surface sizing function for rotations with trig result return. |
| 103 | |
| 104 | \param width The source surface width. |
| 105 | \param height The source surface height. |
| 106 | \param angle The angle to rotate in degrees. |
| 107 | \param center The center of ratation |
| 108 | \param rect_dest Bounding box of rotated rectangle |
| 109 | \param cangle The sine of the angle |
| 110 | \param sangle The cosine of the angle |
| 111 | |
| 112 | */ |
| 113 | void SDLgfx_rotozoomSurfaceSizeTrig(int width, int height, double angle, const SDL_FPoint *center, |
| 114 | SDL_Rect *rect_dest, double *cangle, double *sangle) |
| 115 | { |
| 116 | int minx, maxx, miny, maxy; |
| 117 | double radangle; |
| 118 | double x0, x1, x2, x3; |
| 119 | double y0, y1, y2, y3; |
| 120 | double sinangle; |
| 121 | double cosangle; |
| 122 | |
| 123 | radangle = angle * (SDL_PI_D / 180.0); |
| 124 | sinangle = SDL_sin(radangle); |
| 125 | cosangle = SDL_cos(radangle); |
| 126 | |
| 127 | /* |
| 128 | * Determine destination width and height by rotating a source box, at pixel center |
| 129 | */ |
| 130 | rotate(0.5, 0.5, sinangle, cosangle, center, &x0, &y0); |
| 131 | rotate(width - 0.5, 0.5, sinangle, cosangle, center, &x1, &y1); |
| 132 | rotate(0.5, height - 0.5, sinangle, cosangle, center, &x2, &y2); |
| 133 | rotate(width - 0.5, height - 0.5, sinangle, cosangle, center, &x3, &y3); |
| 134 | |
| 135 | minx = (int)SDL_floor(SDL_min(SDL_min(x0, x1), SDL_min(x2, x3))); |
| 136 | maxx = (int)SDL_ceil(SDL_max(SDL_max(x0, x1), SDL_max(x2, x3))); |
| 137 | |
| 138 | miny = (int)SDL_floor(SDL_min(SDL_min(y0, y1), SDL_min(y2, y3))); |
| 139 | maxy = (int)SDL_ceil(SDL_max(SDL_max(y0, y1), SDL_max(y2, y3))); |
| 140 | |
| 141 | rect_dest->w = maxx - minx; |
| 142 | rect_dest->h = maxy - miny; |
| 143 | rect_dest->x = minx; |
| 144 | rect_dest->y = miny; |
| 145 | |
| 146 | // reverse the angle because our rotations are clockwise |
| 147 | *sangle = -sinangle; |
| 148 | *cangle = cosangle; |
| 149 | |
| 150 | { |
| 151 | // The trig code below gets the wrong size (due to FP inaccuracy?) when angle is a multiple of 90 degrees |
| 152 | int angle90 = (int)(angle / 90); |
| 153 | if (angle90 == angle / 90) { // if the angle is a multiple of 90 degrees |
| 154 | angle90 %= 4; |
| 155 | if (angle90 < 0) { |
| 156 | angle90 += 4; // 0:0 deg, 1:90 deg, 2:180 deg, 3:270 deg |
| 157 | } |
| 158 | |
| 159 | if (angle90 & 1) { |
| 160 | rect_dest->w = height; |
| 161 | rect_dest->h = width; |
| 162 | *cangle = 0; |
| 163 | *sangle = angle90 == 1 ? -1 : 1; // reversed because our rotations are clockwise |
| 164 | } else { |
| 165 | rect_dest->w = width; |
| 166 | rect_dest->h = height; |
| 167 | *cangle = angle90 == 0 ? 1 : -1; |
| 168 | *sangle = 0; |
| 169 | } |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // Computes source pointer X/Y increments for a rotation that's a multiple of 90 degrees. |
| 175 | static void computeSourceIncrements90(SDL_Surface *src, int bpp, int angle, int flipx, int flipy, |
| 176 | int *sincx, int *sincy, int *signx, int *signy) |
| 177 | { |
| 178 | int pitch = flipy ? -src->pitch : src->pitch; |
| 179 | if (flipx) { |
| 180 | bpp = -bpp; |
| 181 | } |
| 182 | switch (angle) { // 0:0 deg, 1:90 deg, 2:180 deg, 3:270 deg |
| 183 | case 0: |
| 184 | *sincx = bpp; |
| 185 | *sincy = pitch - src->w * *sincx; |
| 186 | *signx = *signy = 1; |
| 187 | break; |
| 188 | case 1: |
| 189 | *sincx = -pitch; |
| 190 | *sincy = bpp - *sincx * src->h; |
| 191 | *signx = 1; |
| 192 | *signy = -1; |
| 193 | break; |
| 194 | case 2: |
| 195 | *sincx = -bpp; |
| 196 | *sincy = -src->w * *sincx - pitch; |
| 197 | *signx = *signy = -1; |
| 198 | break; |
| 199 | case 3: |
| 200 | default: |
| 201 | *sincx = pitch; |
| 202 | *sincy = -*sincx * src->h - bpp; |
| 203 | *signx = -1; |
| 204 | *signy = 1; |
| 205 | break; |
| 206 | } |
| 207 | if (flipx) { |
| 208 | *signx = -*signx; |
| 209 | } |
| 210 | if (flipy) { |
| 211 | *signy = -*signy; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | // Performs a relatively fast rotation/flip when the angle is a multiple of 90 degrees. |
| 216 | #define TRANSFORM_SURFACE_90(pixelType) \ |
| 217 | int dy, dincy = dst->pitch - dst->w * sizeof(pixelType), sincx, sincy, signx, signy; \ |
| 218 | Uint8 *sp = (Uint8 *)src->pixels, *dp = (Uint8 *)dst->pixels, *de; \ |
| 219 | \ |
| 220 | computeSourceIncrements90(src, sizeof(pixelType), angle, flipx, flipy, &sincx, &sincy, &signx, &signy); \ |
| 221 | if (signx < 0) \ |
| 222 | sp += (src->w - 1) * sizeof(pixelType); \ |
| 223 | if (signy < 0) \ |
| 224 | sp += (src->h - 1) * src->pitch; \ |
| 225 | \ |
| 226 | for (dy = 0; dy < dst->h; sp += sincy, dp += dincy, dy++) { \ |
| 227 | if (sincx == sizeof(pixelType)) { /* if advancing src and dest equally, use SDL_memcpy */ \ |
| 228 | SDL_memcpy(dp, sp, dst->w * sizeof(pixelType)); \ |
| 229 | sp += dst->w * sizeof(pixelType); \ |
| 230 | dp += dst->w * sizeof(pixelType); \ |
| 231 | } else { \ |
| 232 | for (de = dp + dst->w * sizeof(pixelType); dp != de; sp += sincx, dp += sizeof(pixelType)) { \ |
| 233 | *(pixelType *)dp = *(pixelType *)sp; \ |
| 234 | } \ |
| 235 | } \ |
| 236 | } |
| 237 | |
| 238 | static void transformSurfaceRGBA90(SDL_Surface *src, SDL_Surface *dst, int angle, int flipx, int flipy) |
| 239 | { |
| 240 | TRANSFORM_SURFACE_90(tColorRGBA); |
| 241 | } |
| 242 | |
| 243 | static void transformSurfaceY90(SDL_Surface *src, SDL_Surface *dst, int angle, int flipx, int flipy) |
| 244 | { |
| 245 | TRANSFORM_SURFACE_90(tColorY); |
| 246 | } |
| 247 | |
| 248 | #undef TRANSFORM_SURFACE_90 |
| 249 | |
| 250 | /** |
| 251 | Internal 32 bit rotozoomer with optional anti-aliasing. |
| 252 | |
| 253 | Rotates and zooms 32 bit RGBA/ABGR 'src' surface to 'dst' surface based on the control |
| 254 | parameters by scanning the destination surface and applying optionally anti-aliasing |
| 255 | by bilinear interpolation. |
| 256 | Assumes src and dst surfaces are of 32 bit depth. |
| 257 | Assumes dst surface was allocated with the correct dimensions. |
| 258 | |
| 259 | \param src Source surface. |
| 260 | \param dst Destination surface. |
| 261 | \param isin Integer version of sine of angle. |
| 262 | \param icos Integer version of cosine of angle. |
| 263 | \param flipx Flag indicating horizontal mirroring should be applied. |
| 264 | \param flipy Flag indicating vertical mirroring should be applied. |
| 265 | \param smooth Flag indicating anti-aliasing should be used. |
| 266 | \param rect_dest destination coordinates |
| 267 | \param center true center. |
| 268 | */ |
| 269 | static void transformSurfaceRGBA(SDL_Surface *src, SDL_Surface *dst, int isin, int icos, |
| 270 | int flipx, int flipy, int smooth, |
| 271 | const SDL_Rect *rect_dest, |
| 272 | const SDL_FPoint *center) |
| 273 | { |
| 274 | int sw, sh; |
| 275 | int cx, cy; |
| 276 | tColorRGBA c00, c01, c10, c11, cswap; |
| 277 | tColorRGBA *pc, *sp; |
| 278 | int gap; |
| 279 | const int fp_half = (1 << 15); |
| 280 | |
| 281 | /* |
| 282 | * Variable setup |
| 283 | */ |
| 284 | sw = src->w - 1; |
| 285 | sh = src->h - 1; |
| 286 | pc = (tColorRGBA *)dst->pixels; |
| 287 | gap = dst->pitch - dst->w * 4; |
| 288 | cx = (int)(center->x * 65536.0); |
| 289 | cy = (int)(center->y * 65536.0); |
| 290 | |
| 291 | /* |
| 292 | * Switch between interpolating and non-interpolating code |
| 293 | */ |
| 294 | if (smooth) { |
| 295 | int y; |
| 296 | for (y = 0; y < dst->h; y++) { |
| 297 | int x; |
| 298 | double src_x = ((double)rect_dest->x + 0 + 0.5 - center->x); |
| 299 | double src_y = ((double)rect_dest->y + y + 0.5 - center->y); |
| 300 | int sdx = (int)((icos * src_x - isin * src_y) + cx - fp_half); |
| 301 | int sdy = (int)((isin * src_x + icos * src_y) + cy - fp_half); |
| 302 | for (x = 0; x < dst->w; x++) { |
| 303 | int dx = (sdx >> 16); |
| 304 | int dy = (sdy >> 16); |
| 305 | if (flipx) { |
| 306 | dx = sw - dx; |
| 307 | } |
| 308 | if (flipy) { |
| 309 | dy = sh - dy; |
| 310 | } |
| 311 | if ((dx > -1) && (dy > -1) && (dx < (src->w - 1)) && (dy < (src->h - 1))) { |
| 312 | int ex, ey; |
| 313 | int t1, t2; |
| 314 | sp = (tColorRGBA *)((Uint8 *)src->pixels + src->pitch * dy) + dx; |
| 315 | c00 = *sp; |
| 316 | sp += 1; |
| 317 | c01 = *sp; |
| 318 | sp += (src->pitch / 4); |
| 319 | c11 = *sp; |
| 320 | sp -= 1; |
| 321 | c10 = *sp; |
| 322 | if (flipx) { |
| 323 | cswap = c00; |
| 324 | c00 = c01; |
| 325 | c01 = cswap; |
| 326 | cswap = c10; |
| 327 | c10 = c11; |
| 328 | c11 = cswap; |
| 329 | } |
| 330 | if (flipy) { |
| 331 | cswap = c00; |
| 332 | c00 = c10; |
| 333 | c10 = cswap; |
| 334 | cswap = c01; |
| 335 | c01 = c11; |
| 336 | c11 = cswap; |
| 337 | } |
| 338 | /* |
| 339 | * Interpolate colors |
| 340 | */ |
| 341 | ex = (sdx & 0xffff); |
| 342 | ey = (sdy & 0xffff); |
| 343 | t1 = ((((c01.r - c00.r) * ex) >> 16) + c00.r) & 0xff; |
| 344 | t2 = ((((c11.r - c10.r) * ex) >> 16) + c10.r) & 0xff; |
| 345 | pc->r = (Uint8)((((t2 - t1) * ey) >> 16) + t1); |
| 346 | t1 = ((((c01.g - c00.g) * ex) >> 16) + c00.g) & 0xff; |
| 347 | t2 = ((((c11.g - c10.g) * ex) >> 16) + c10.g) & 0xff; |
| 348 | pc->g = (Uint8)((((t2 - t1) * ey) >> 16) + t1); |
| 349 | t1 = ((((c01.b - c00.b) * ex) >> 16) + c00.b) & 0xff; |
| 350 | t2 = ((((c11.b - c10.b) * ex) >> 16) + c10.b) & 0xff; |
| 351 | pc->b = (Uint8)((((t2 - t1) * ey) >> 16) + t1); |
| 352 | t1 = ((((c01.a - c00.a) * ex) >> 16) + c00.a) & 0xff; |
| 353 | t2 = ((((c11.a - c10.a) * ex) >> 16) + c10.a) & 0xff; |
| 354 | pc->a = (Uint8)((((t2 - t1) * ey) >> 16) + t1); |
| 355 | } |
| 356 | sdx += icos; |
| 357 | sdy += isin; |
| 358 | pc++; |
| 359 | } |
| 360 | pc = (tColorRGBA *)((Uint8 *)pc + gap); |
| 361 | } |
| 362 | } else { |
| 363 | int y; |
| 364 | for (y = 0; y < dst->h; y++) { |
| 365 | int x; |
| 366 | double src_x = ((double)rect_dest->x + 0 + 0.5 - center->x); |
| 367 | double src_y = ((double)rect_dest->y + y + 0.5 - center->y); |
| 368 | int sdx = (int)((icos * src_x - isin * src_y) + cx - fp_half); |
| 369 | int sdy = (int)((isin * src_x + icos * src_y) + cy - fp_half); |
| 370 | for (x = 0; x < dst->w; x++) { |
| 371 | int dx = (sdx >> 16); |
| 372 | int dy = (sdy >> 16); |
| 373 | if ((unsigned)dx < (unsigned)src->w && (unsigned)dy < (unsigned)src->h) { |
| 374 | if (flipx) { |
| 375 | dx = sw - dx; |
| 376 | } |
| 377 | if (flipy) { |
| 378 | dy = sh - dy; |
| 379 | } |
| 380 | *pc = *((tColorRGBA *)((Uint8 *)src->pixels + src->pitch * dy) + dx); |
| 381 | } |
| 382 | sdx += icos; |
| 383 | sdy += isin; |
| 384 | pc++; |
| 385 | } |
| 386 | pc = (tColorRGBA *)((Uint8 *)pc + gap); |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | /** |
| 392 | |
| 393 | Rotates and zooms 8 bit palette/Y 'src' surface to 'dst' surface without smoothing. |
| 394 | |
| 395 | Rotates and zooms 8 bit RGBA/ABGR 'src' surface to 'dst' surface based on the control |
| 396 | parameters by scanning the destination surface. |
| 397 | Assumes src and dst surfaces are of 8 bit depth. |
| 398 | Assumes dst surface was allocated with the correct dimensions. |
| 399 | |
| 400 | \param src Source surface. |
| 401 | \param dst Destination surface. |
| 402 | \param isin Integer version of sine of angle. |
| 403 | \param icos Integer version of cosine of angle. |
| 404 | \param flipx Flag indicating horizontal mirroring should be applied. |
| 405 | \param flipy Flag indicating vertical mirroring should be applied. |
| 406 | \param rect_dest destination coordinates |
| 407 | \param center true center. |
| 408 | */ |
| 409 | static void transformSurfaceY(SDL_Surface *src, SDL_Surface *dst, int isin, int icos, int flipx, int flipy, |
| 410 | const SDL_Rect *rect_dest, |
| 411 | const SDL_FPoint *center) |
| 412 | { |
| 413 | int sw, sh; |
| 414 | int cx, cy; |
| 415 | tColorY *pc; |
| 416 | int gap; |
| 417 | const int fp_half = (1 << 15); |
| 418 | int y; |
| 419 | |
| 420 | /* |
| 421 | * Variable setup |
| 422 | */ |
| 423 | sw = src->w - 1; |
| 424 | sh = src->h - 1; |
| 425 | pc = (tColorY *)dst->pixels; |
| 426 | gap = dst->pitch - dst->w; |
| 427 | cx = (int)(center->x * 65536.0); |
| 428 | cy = (int)(center->y * 65536.0); |
| 429 | |
| 430 | /* |
| 431 | * Clear surface to colorkey |
| 432 | */ |
| 433 | SDL_memset(pc, (int)(get_colorkey(src) & 0xff), (size_t)dst->pitch * dst->h); |
| 434 | /* |
| 435 | * Iterate through destination surface |
| 436 | */ |
| 437 | for (y = 0; y < dst->h; y++) { |
| 438 | int x; |
| 439 | double src_x = ((double)rect_dest->x + 0 + 0.5 - center->x); |
| 440 | double src_y = ((double)rect_dest->y + y + 0.5 - center->y); |
| 441 | int sdx = (int)((icos * src_x - isin * src_y) + cx - fp_half); |
| 442 | int sdy = (int)((isin * src_x + icos * src_y) + cy - fp_half); |
| 443 | for (x = 0; x < dst->w; x++) { |
| 444 | int dx = (sdx >> 16); |
| 445 | int dy = (sdy >> 16); |
| 446 | if ((unsigned)dx < (unsigned)src->w && (unsigned)dy < (unsigned)src->h) { |
| 447 | if (flipx) { |
| 448 | dx = sw - dx; |
| 449 | } |
| 450 | if (flipy) { |
| 451 | dy = sh - dy; |
| 452 | } |
| 453 | *pc = *((tColorY *)src->pixels + src->pitch * dy + dx); |
| 454 | } |
| 455 | sdx += icos; |
| 456 | sdy += isin; |
| 457 | pc++; |
| 458 | } |
| 459 | pc += gap; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | /** |
| 464 | Rotates and zooms a surface with different horizontal and vertival scaling factors and optional anti-aliasing. |
| 465 | |
| 466 | Rotates a 32-bit or 8-bit 'src' surface to newly created 'dst' surface. |
| 467 | 'angle' is the rotation in degrees, 'center' the rotation center. If 'smooth' is set |
| 468 | then the destination 32-bit surface is anti-aliased. 8-bit surfaces must have a colorkey. 32-bit |
| 469 | surfaces must have a 8888 layout with red, green, blue and alpha masks (any ordering goes). |
| 470 | The blend mode of the 'src' surface has some effects on generation of the 'dst' surface: The NONE |
| 471 | mode will set the BLEND mode on the 'dst' surface. The MOD mode either generates a white 'dst' |
| 472 | surface and sets the colorkey or fills the it with the colorkey before copying the pixels. |
| 473 | When using the NONE and MOD modes, color and alpha modulation must be applied before using this function. |
| 474 | |
| 475 | \param src The surface to rotozoom. |
| 476 | \param angle The angle to rotate in degrees. |
| 477 | \param smooth Antialiasing flag; set to SMOOTHING_ON to enable. |
| 478 | \param flipx Set to 1 to flip the image horizontally |
| 479 | \param flipy Set to 1 to flip the image vertically |
| 480 | \param rect_dest The destination rect bounding box |
| 481 | \param cangle The angle cosine |
| 482 | \param sangle The angle sine |
| 483 | \param center The true coordinate of the center of rotation |
| 484 | \return The new rotated surface. |
| 485 | |
| 486 | */ |
| 487 | |
| 488 | SDL_Surface *SDLgfx_rotateSurface(SDL_Surface *src, double angle, int smooth, int flipx, int flipy, |
| 489 | const SDL_Rect *rect_dest, double cangle, double sangle, const SDL_FPoint *center) |
| 490 | { |
| 491 | SDL_Surface *rz_dst; |
| 492 | int is8bit, angle90; |
| 493 | SDL_BlendMode blendmode; |
| 494 | Uint32 colorkey = 0; |
| 495 | bool colorKeyAvailable = false; |
| 496 | double sangleinv, cangleinv; |
| 497 | |
| 498 | // Sanity check |
| 499 | if (!SDL_SurfaceValid(src)) { |
| 500 | return NULL; |
| 501 | } |
| 502 | |
| 503 | if (SDL_SurfaceHasColorKey(src)) { |
| 504 | if (SDL_GetSurfaceColorKey(src, &colorkey)) { |
| 505 | colorKeyAvailable = true; |
| 506 | } |
| 507 | } |
| 508 | // This function requires a 32-bit surface or 8-bit surface with a colorkey |
| 509 | is8bit = src->fmt->bits_per_pixel == 8 && colorKeyAvailable; |
| 510 | if (!(is8bit || (src->fmt->bits_per_pixel == 32 && SDL_ISPIXELFORMAT_ALPHA(src->format)))) { |
| 511 | return NULL; |
| 512 | } |
| 513 | |
| 514 | // Calculate target factors from sine/cosine and zoom |
| 515 | sangleinv = sangle * 65536.0; |
| 516 | cangleinv = cangle * 65536.0; |
| 517 | |
| 518 | // Alloc space to completely contain the rotated surface |
| 519 | rz_dst = NULL; |
| 520 | if (is8bit) { |
| 521 | // Target surface is 8 bit |
| 522 | rz_dst = SDL_CreateSurface(rect_dest->w, rect_dest->h + GUARD_ROWS, src->format); |
| 523 | if (rz_dst) { |
| 524 | SDL_SetSurfacePalette(rz_dst, src->palette); |
| 525 | } |
| 526 | } else { |
| 527 | // Target surface is 32 bit with source RGBA ordering |
| 528 | rz_dst = SDL_CreateSurface(rect_dest->w, rect_dest->h + GUARD_ROWS, src->format); |
| 529 | } |
| 530 | |
| 531 | // Check target |
| 532 | if (!rz_dst) { |
| 533 | return NULL; |
| 534 | } |
| 535 | |
| 536 | // Adjust for guard rows |
| 537 | rz_dst->h = rect_dest->h; |
| 538 | |
| 539 | SDL_GetSurfaceBlendMode(src, &blendmode); |
| 540 | |
| 541 | if (colorKeyAvailable) { |
| 542 | // If available, the colorkey will be used to discard the pixels that are outside of the rotated area. |
| 543 | SDL_SetSurfaceColorKey(rz_dst, true, colorkey); |
| 544 | SDL_FillSurfaceRect(rz_dst, NULL, colorkey); |
| 545 | } else if (blendmode == SDL_BLENDMODE_NONE) { |
| 546 | blendmode = SDL_BLENDMODE_BLEND; |
| 547 | } else if (blendmode == SDL_BLENDMODE_MOD || blendmode == SDL_BLENDMODE_MUL) { |
| 548 | /* Without a colorkey, the target texture has to be white for the MOD and MUL blend mode so |
| 549 | * that the pixels outside the rotated area don't affect the destination surface. |
| 550 | */ |
| 551 | colorkey = SDL_MapSurfaceRGBA(rz_dst, 255, 255, 255, 0); |
| 552 | SDL_FillSurfaceRect(rz_dst, NULL, colorkey); |
| 553 | /* Setting a white colorkey for the destination surface makes the final blit discard |
| 554 | * all pixels outside of the rotated area. This doesn't interfere with anything because |
| 555 | * white pixels are already a no-op and the MOD blend mode does not interact with alpha. |
| 556 | */ |
| 557 | SDL_SetSurfaceColorKey(rz_dst, true, colorkey); |
| 558 | } |
| 559 | |
| 560 | SDL_SetSurfaceBlendMode(rz_dst, blendmode); |
| 561 | |
| 562 | // Lock source surface |
| 563 | if (SDL_MUSTLOCK(src)) { |
| 564 | if (!SDL_LockSurface(src)) { |
| 565 | SDL_DestroySurface(rz_dst); |
| 566 | return NULL; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | /* check if the rotation is a multiple of 90 degrees so we can take a fast path and also somewhat reduce |
| 571 | * the off-by-one problem in transformSurfaceRGBA that expresses itself when the rotation is near |
| 572 | * multiples of 90 degrees. |
| 573 | */ |
| 574 | angle90 = (int)(angle / 90); |
| 575 | if (angle90 == angle / 90) { |
| 576 | angle90 %= 4; |
| 577 | if (angle90 < 0) { |
| 578 | angle90 += 4; // 0:0 deg, 1:90 deg, 2:180 deg, 3:270 deg |
| 579 | } |
| 580 | |
| 581 | } else { |
| 582 | angle90 = -1; |
| 583 | } |
| 584 | |
| 585 | if (is8bit) { |
| 586 | // Call the 8-bit transformation routine to do the rotation |
| 587 | if (angle90 >= 0) { |
| 588 | transformSurfaceY90(src, rz_dst, angle90, flipx, flipy); |
| 589 | } else { |
| 590 | transformSurfaceY(src, rz_dst, (int)sangleinv, (int)cangleinv, |
| 591 | flipx, flipy, rect_dest, center); |
| 592 | } |
| 593 | } else { |
| 594 | // Call the 32-bit transformation routine to do the rotation |
| 595 | if (angle90 >= 0) { |
| 596 | transformSurfaceRGBA90(src, rz_dst, angle90, flipx, flipy); |
| 597 | } else { |
| 598 | transformSurfaceRGBA(src, rz_dst, (int)sangleinv, (int)cangleinv, |
| 599 | flipx, flipy, smooth, rect_dest, center); |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | // Unlock source surface |
| 604 | if (SDL_MUSTLOCK(src)) { |
| 605 | SDL_UnlockSurface(src); |
| 606 | } |
| 607 | |
| 608 | // Return rotated surface |
| 609 | return rz_dst; |
| 610 | } |
| 611 | |
| 612 | #endif // SDL_VIDEO_RENDER_SW |
| 613 | |