| 1 | /**************************************************************************/ |
| 2 | /* rect2.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "rect2.h" |
| 32 | |
| 33 | #include "core/math/rect2i.h" |
| 34 | #include "core/math/transform_2d.h" |
| 35 | #include "core/string/ustring.h" |
| 36 | |
| 37 | bool Rect2::is_equal_approx(const Rect2 &p_rect) const { |
| 38 | return position.is_equal_approx(p_rect.position) && size.is_equal_approx(p_rect.size); |
| 39 | } |
| 40 | |
| 41 | bool Rect2::is_finite() const { |
| 42 | return position.is_finite() && size.is_finite(); |
| 43 | } |
| 44 | |
| 45 | bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const { |
| 46 | #ifdef MATH_CHECKS |
| 47 | if (unlikely(size.x < 0 || size.y < 0)) { |
| 48 | ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size." ); |
| 49 | } |
| 50 | #endif |
| 51 | real_t min = 0, max = 1; |
| 52 | int axis = 0; |
| 53 | real_t sign = 0; |
| 54 | |
| 55 | for (int i = 0; i < 2; i++) { |
| 56 | real_t seg_from = p_from[i]; |
| 57 | real_t seg_to = p_to[i]; |
| 58 | real_t box_begin = position[i]; |
| 59 | real_t box_end = box_begin + size[i]; |
| 60 | real_t cmin, cmax; |
| 61 | real_t csign; |
| 62 | |
| 63 | if (seg_from < seg_to) { |
| 64 | if (seg_from > box_end || seg_to < box_begin) { |
| 65 | return false; |
| 66 | } |
| 67 | real_t length = seg_to - seg_from; |
| 68 | cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; |
| 69 | cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; |
| 70 | csign = -1.0; |
| 71 | |
| 72 | } else { |
| 73 | if (seg_to > box_end || seg_from < box_begin) { |
| 74 | return false; |
| 75 | } |
| 76 | real_t length = seg_to - seg_from; |
| 77 | cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; |
| 78 | cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; |
| 79 | csign = 1.0; |
| 80 | } |
| 81 | |
| 82 | if (cmin > min) { |
| 83 | min = cmin; |
| 84 | axis = i; |
| 85 | sign = csign; |
| 86 | } |
| 87 | if (cmax < max) { |
| 88 | max = cmax; |
| 89 | } |
| 90 | if (max < min) { |
| 91 | return false; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | Vector2 rel = p_to - p_from; |
| 96 | |
| 97 | if (r_normal) { |
| 98 | Vector2 normal; |
| 99 | normal[axis] = sign; |
| 100 | *r_normal = normal; |
| 101 | } |
| 102 | |
| 103 | if (r_pos) { |
| 104 | *r_pos = p_from + rel * min; |
| 105 | } |
| 106 | |
| 107 | return true; |
| 108 | } |
| 109 | |
| 110 | bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const { |
| 111 | #ifdef MATH_CHECKS |
| 112 | if (unlikely(size.x < 0 || size.y < 0 || p_rect.size.x < 0 || p_rect.size.y < 0)) { |
| 113 | ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size." ); |
| 114 | } |
| 115 | #endif |
| 116 | //SAT intersection between local and transformed rect2 |
| 117 | |
| 118 | Vector2 xf_points[4] = { |
| 119 | p_xform.xform(p_rect.position), |
| 120 | p_xform.xform(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y)), |
| 121 | p_xform.xform(Vector2(p_rect.position.x, p_rect.position.y + p_rect.size.y)), |
| 122 | p_xform.xform(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y + p_rect.size.y)), |
| 123 | }; |
| 124 | |
| 125 | real_t low_limit; |
| 126 | |
| 127 | //base rect2 first (faster) |
| 128 | |
| 129 | if (xf_points[0].y > position.y) { |
| 130 | goto next1; |
| 131 | } |
| 132 | if (xf_points[1].y > position.y) { |
| 133 | goto next1; |
| 134 | } |
| 135 | if (xf_points[2].y > position.y) { |
| 136 | goto next1; |
| 137 | } |
| 138 | if (xf_points[3].y > position.y) { |
| 139 | goto next1; |
| 140 | } |
| 141 | |
| 142 | return false; |
| 143 | |
| 144 | next1: |
| 145 | |
| 146 | low_limit = position.y + size.y; |
| 147 | |
| 148 | if (xf_points[0].y < low_limit) { |
| 149 | goto next2; |
| 150 | } |
| 151 | if (xf_points[1].y < low_limit) { |
| 152 | goto next2; |
| 153 | } |
| 154 | if (xf_points[2].y < low_limit) { |
| 155 | goto next2; |
| 156 | } |
| 157 | if (xf_points[3].y < low_limit) { |
| 158 | goto next2; |
| 159 | } |
| 160 | |
| 161 | return false; |
| 162 | |
| 163 | next2: |
| 164 | |
| 165 | if (xf_points[0].x > position.x) { |
| 166 | goto next3; |
| 167 | } |
| 168 | if (xf_points[1].x > position.x) { |
| 169 | goto next3; |
| 170 | } |
| 171 | if (xf_points[2].x > position.x) { |
| 172 | goto next3; |
| 173 | } |
| 174 | if (xf_points[3].x > position.x) { |
| 175 | goto next3; |
| 176 | } |
| 177 | |
| 178 | return false; |
| 179 | |
| 180 | next3: |
| 181 | |
| 182 | low_limit = position.x + size.x; |
| 183 | |
| 184 | if (xf_points[0].x < low_limit) { |
| 185 | goto next4; |
| 186 | } |
| 187 | if (xf_points[1].x < low_limit) { |
| 188 | goto next4; |
| 189 | } |
| 190 | if (xf_points[2].x < low_limit) { |
| 191 | goto next4; |
| 192 | } |
| 193 | if (xf_points[3].x < low_limit) { |
| 194 | goto next4; |
| 195 | } |
| 196 | |
| 197 | return false; |
| 198 | |
| 199 | next4: |
| 200 | |
| 201 | Vector2 xf_points2[4] = { |
| 202 | position, |
| 203 | Vector2(position.x + size.x, position.y), |
| 204 | Vector2(position.x, position.y + size.y), |
| 205 | Vector2(position.x + size.x, position.y + size.y), |
| 206 | }; |
| 207 | |
| 208 | real_t maxa = p_xform.columns[0].dot(xf_points2[0]); |
| 209 | real_t mina = maxa; |
| 210 | |
| 211 | real_t dp = p_xform.columns[0].dot(xf_points2[1]); |
| 212 | maxa = MAX(dp, maxa); |
| 213 | mina = MIN(dp, mina); |
| 214 | |
| 215 | dp = p_xform.columns[0].dot(xf_points2[2]); |
| 216 | maxa = MAX(dp, maxa); |
| 217 | mina = MIN(dp, mina); |
| 218 | |
| 219 | dp = p_xform.columns[0].dot(xf_points2[3]); |
| 220 | maxa = MAX(dp, maxa); |
| 221 | mina = MIN(dp, mina); |
| 222 | |
| 223 | real_t maxb = p_xform.columns[0].dot(xf_points[0]); |
| 224 | real_t minb = maxb; |
| 225 | |
| 226 | dp = p_xform.columns[0].dot(xf_points[1]); |
| 227 | maxb = MAX(dp, maxb); |
| 228 | minb = MIN(dp, minb); |
| 229 | |
| 230 | dp = p_xform.columns[0].dot(xf_points[2]); |
| 231 | maxb = MAX(dp, maxb); |
| 232 | minb = MIN(dp, minb); |
| 233 | |
| 234 | dp = p_xform.columns[0].dot(xf_points[3]); |
| 235 | maxb = MAX(dp, maxb); |
| 236 | minb = MIN(dp, minb); |
| 237 | |
| 238 | if (mina > maxb) { |
| 239 | return false; |
| 240 | } |
| 241 | if (minb > maxa) { |
| 242 | return false; |
| 243 | } |
| 244 | |
| 245 | maxa = p_xform.columns[1].dot(xf_points2[0]); |
| 246 | mina = maxa; |
| 247 | |
| 248 | dp = p_xform.columns[1].dot(xf_points2[1]); |
| 249 | maxa = MAX(dp, maxa); |
| 250 | mina = MIN(dp, mina); |
| 251 | |
| 252 | dp = p_xform.columns[1].dot(xf_points2[2]); |
| 253 | maxa = MAX(dp, maxa); |
| 254 | mina = MIN(dp, mina); |
| 255 | |
| 256 | dp = p_xform.columns[1].dot(xf_points2[3]); |
| 257 | maxa = MAX(dp, maxa); |
| 258 | mina = MIN(dp, mina); |
| 259 | |
| 260 | maxb = p_xform.columns[1].dot(xf_points[0]); |
| 261 | minb = maxb; |
| 262 | |
| 263 | dp = p_xform.columns[1].dot(xf_points[1]); |
| 264 | maxb = MAX(dp, maxb); |
| 265 | minb = MIN(dp, minb); |
| 266 | |
| 267 | dp = p_xform.columns[1].dot(xf_points[2]); |
| 268 | maxb = MAX(dp, maxb); |
| 269 | minb = MIN(dp, minb); |
| 270 | |
| 271 | dp = p_xform.columns[1].dot(xf_points[3]); |
| 272 | maxb = MAX(dp, maxb); |
| 273 | minb = MIN(dp, minb); |
| 274 | |
| 275 | if (mina > maxb) { |
| 276 | return false; |
| 277 | } |
| 278 | if (minb > maxa) { |
| 279 | return false; |
| 280 | } |
| 281 | |
| 282 | return true; |
| 283 | } |
| 284 | |
| 285 | Rect2::operator String() const { |
| 286 | return "[P: " + position.operator String() + ", S: " + size + "]" ; |
| 287 | } |
| 288 | |
| 289 | Rect2::operator Rect2i() const { |
| 290 | return Rect2i(position, size); |
| 291 | } |
| 292 | |