| 1 | /**************************************************************************/ |
| 2 | /* quaternion.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "quaternion.h" |
| 32 | |
| 33 | #include "core/math/basis.h" |
| 34 | #include "core/string/ustring.h" |
| 35 | |
| 36 | real_t Quaternion::angle_to(const Quaternion &p_to) const { |
| 37 | real_t d = dot(p_to); |
| 38 | // acos does clamping. |
| 39 | return Math::acos(d * d * 2 - 1); |
| 40 | } |
| 41 | |
| 42 | Vector3 Quaternion::get_euler(EulerOrder p_order) const { |
| 43 | #ifdef MATH_CHECKS |
| 44 | ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized." ); |
| 45 | #endif |
| 46 | return Basis(*this).get_euler(p_order); |
| 47 | } |
| 48 | |
| 49 | void Quaternion::operator*=(const Quaternion &p_q) { |
| 50 | real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; |
| 51 | real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; |
| 52 | real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; |
| 53 | w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; |
| 54 | x = xx; |
| 55 | y = yy; |
| 56 | z = zz; |
| 57 | } |
| 58 | |
| 59 | Quaternion Quaternion::operator*(const Quaternion &p_q) const { |
| 60 | Quaternion r = *this; |
| 61 | r *= p_q; |
| 62 | return r; |
| 63 | } |
| 64 | |
| 65 | bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const { |
| 66 | return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w); |
| 67 | } |
| 68 | |
| 69 | bool Quaternion::is_finite() const { |
| 70 | return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z) && Math::is_finite(w); |
| 71 | } |
| 72 | |
| 73 | real_t Quaternion::length() const { |
| 74 | return Math::sqrt(length_squared()); |
| 75 | } |
| 76 | |
| 77 | void Quaternion::normalize() { |
| 78 | *this /= length(); |
| 79 | } |
| 80 | |
| 81 | Quaternion Quaternion::normalized() const { |
| 82 | return *this / length(); |
| 83 | } |
| 84 | |
| 85 | bool Quaternion::is_normalized() const { |
| 86 | return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon |
| 87 | } |
| 88 | |
| 89 | Quaternion Quaternion::inverse() const { |
| 90 | #ifdef MATH_CHECKS |
| 91 | ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized." ); |
| 92 | #endif |
| 93 | return Quaternion(-x, -y, -z, w); |
| 94 | } |
| 95 | |
| 96 | Quaternion Quaternion::log() const { |
| 97 | Quaternion src = *this; |
| 98 | Vector3 src_v = src.get_axis() * src.get_angle(); |
| 99 | return Quaternion(src_v.x, src_v.y, src_v.z, 0); |
| 100 | } |
| 101 | |
| 102 | Quaternion Quaternion::exp() const { |
| 103 | Quaternion src = *this; |
| 104 | Vector3 src_v = Vector3(src.x, src.y, src.z); |
| 105 | real_t theta = src_v.length(); |
| 106 | src_v = src_v.normalized(); |
| 107 | if (theta < CMP_EPSILON || !src_v.is_normalized()) { |
| 108 | return Quaternion(0, 0, 0, 1); |
| 109 | } |
| 110 | return Quaternion(src_v, theta); |
| 111 | } |
| 112 | |
| 113 | Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { |
| 114 | #ifdef MATH_CHECKS |
| 115 | ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized." ); |
| 116 | ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized." ); |
| 117 | #endif |
| 118 | Quaternion to1; |
| 119 | real_t omega, cosom, sinom, scale0, scale1; |
| 120 | |
| 121 | // calc cosine |
| 122 | cosom = dot(p_to); |
| 123 | |
| 124 | // adjust signs (if necessary) |
| 125 | if (cosom < 0.0f) { |
| 126 | cosom = -cosom; |
| 127 | to1 = -p_to; |
| 128 | } else { |
| 129 | to1 = p_to; |
| 130 | } |
| 131 | |
| 132 | // calculate coefficients |
| 133 | |
| 134 | if ((1.0f - cosom) > (real_t)CMP_EPSILON) { |
| 135 | // standard case (slerp) |
| 136 | omega = Math::acos(cosom); |
| 137 | sinom = Math::sin(omega); |
| 138 | scale0 = Math::sin((1.0 - p_weight) * omega) / sinom; |
| 139 | scale1 = Math::sin(p_weight * omega) / sinom; |
| 140 | } else { |
| 141 | // "from" and "to" quaternions are very close |
| 142 | // ... so we can do a linear interpolation |
| 143 | scale0 = 1.0f - p_weight; |
| 144 | scale1 = p_weight; |
| 145 | } |
| 146 | // calculate final values |
| 147 | return Quaternion( |
| 148 | scale0 * x + scale1 * to1.x, |
| 149 | scale0 * y + scale1 * to1.y, |
| 150 | scale0 * z + scale1 * to1.z, |
| 151 | scale0 * w + scale1 * to1.w); |
| 152 | } |
| 153 | |
| 154 | Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { |
| 155 | #ifdef MATH_CHECKS |
| 156 | ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized." ); |
| 157 | ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized." ); |
| 158 | #endif |
| 159 | const Quaternion &from = *this; |
| 160 | |
| 161 | real_t dot = from.dot(p_to); |
| 162 | |
| 163 | if (Math::absf(dot) > 0.9999f) { |
| 164 | return from; |
| 165 | } |
| 166 | |
| 167 | real_t theta = Math::acos(dot), |
| 168 | sinT = 1.0f / Math::sin(theta), |
| 169 | newFactor = Math::sin(p_weight * theta) * sinT, |
| 170 | invFactor = Math::sin((1.0f - p_weight) * theta) * sinT; |
| 171 | |
| 172 | return Quaternion(invFactor * from.x + newFactor * p_to.x, |
| 173 | invFactor * from.y + newFactor * p_to.y, |
| 174 | invFactor * from.z + newFactor * p_to.z, |
| 175 | invFactor * from.w + newFactor * p_to.w); |
| 176 | } |
| 177 | |
| 178 | Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { |
| 179 | #ifdef MATH_CHECKS |
| 180 | ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized." ); |
| 181 | ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized." ); |
| 182 | #endif |
| 183 | Quaternion from_q = *this; |
| 184 | Quaternion pre_q = p_pre_a; |
| 185 | Quaternion to_q = p_b; |
| 186 | Quaternion post_q = p_post_b; |
| 187 | |
| 188 | // Align flip phases. |
| 189 | from_q = Basis(from_q).get_rotation_quaternion(); |
| 190 | pre_q = Basis(pre_q).get_rotation_quaternion(); |
| 191 | to_q = Basis(to_q).get_rotation_quaternion(); |
| 192 | post_q = Basis(post_q).get_rotation_quaternion(); |
| 193 | |
| 194 | // Flip quaternions to shortest path if necessary. |
| 195 | bool flip1 = signbit(from_q.dot(pre_q)); |
| 196 | pre_q = flip1 ? -pre_q : pre_q; |
| 197 | bool flip2 = signbit(from_q.dot(to_q)); |
| 198 | to_q = flip2 ? -to_q : to_q; |
| 199 | bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q)); |
| 200 | post_q = flip3 ? -post_q : post_q; |
| 201 | |
| 202 | // Calc by Expmap in from_q space. |
| 203 | Quaternion ln_from = Quaternion(0, 0, 0, 0); |
| 204 | Quaternion ln_to = (from_q.inverse() * to_q).log(); |
| 205 | Quaternion ln_pre = (from_q.inverse() * pre_q).log(); |
| 206 | Quaternion ln_post = (from_q.inverse() * post_q).log(); |
| 207 | Quaternion ln = Quaternion(0, 0, 0, 0); |
| 208 | ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); |
| 209 | ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); |
| 210 | ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); |
| 211 | Quaternion q1 = from_q * ln.exp(); |
| 212 | |
| 213 | // Calc by Expmap in to_q space. |
| 214 | ln_from = (to_q.inverse() * from_q).log(); |
| 215 | ln_to = Quaternion(0, 0, 0, 0); |
| 216 | ln_pre = (to_q.inverse() * pre_q).log(); |
| 217 | ln_post = (to_q.inverse() * post_q).log(); |
| 218 | ln = Quaternion(0, 0, 0, 0); |
| 219 | ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); |
| 220 | ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); |
| 221 | ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); |
| 222 | Quaternion q2 = to_q * ln.exp(); |
| 223 | |
| 224 | // To cancel error made by Expmap ambiguity, do blending. |
| 225 | return q1.slerp(q2, p_weight); |
| 226 | } |
| 227 | |
| 228 | Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, |
| 229 | const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { |
| 230 | #ifdef MATH_CHECKS |
| 231 | ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized." ); |
| 232 | ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized." ); |
| 233 | #endif |
| 234 | Quaternion from_q = *this; |
| 235 | Quaternion pre_q = p_pre_a; |
| 236 | Quaternion to_q = p_b; |
| 237 | Quaternion post_q = p_post_b; |
| 238 | |
| 239 | // Align flip phases. |
| 240 | from_q = Basis(from_q).get_rotation_quaternion(); |
| 241 | pre_q = Basis(pre_q).get_rotation_quaternion(); |
| 242 | to_q = Basis(to_q).get_rotation_quaternion(); |
| 243 | post_q = Basis(post_q).get_rotation_quaternion(); |
| 244 | |
| 245 | // Flip quaternions to shortest path if necessary. |
| 246 | bool flip1 = signbit(from_q.dot(pre_q)); |
| 247 | pre_q = flip1 ? -pre_q : pre_q; |
| 248 | bool flip2 = signbit(from_q.dot(to_q)); |
| 249 | to_q = flip2 ? -to_q : to_q; |
| 250 | bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q)); |
| 251 | post_q = flip3 ? -post_q : post_q; |
| 252 | |
| 253 | // Calc by Expmap in from_q space. |
| 254 | Quaternion ln_from = Quaternion(0, 0, 0, 0); |
| 255 | Quaternion ln_to = (from_q.inverse() * to_q).log(); |
| 256 | Quaternion ln_pre = (from_q.inverse() * pre_q).log(); |
| 257 | Quaternion ln_post = (from_q.inverse() * post_q).log(); |
| 258 | Quaternion ln = Quaternion(0, 0, 0, 0); |
| 259 | ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); |
| 260 | ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); |
| 261 | ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); |
| 262 | Quaternion q1 = from_q * ln.exp(); |
| 263 | |
| 264 | // Calc by Expmap in to_q space. |
| 265 | ln_from = (to_q.inverse() * from_q).log(); |
| 266 | ln_to = Quaternion(0, 0, 0, 0); |
| 267 | ln_pre = (to_q.inverse() * pre_q).log(); |
| 268 | ln_post = (to_q.inverse() * post_q).log(); |
| 269 | ln = Quaternion(0, 0, 0, 0); |
| 270 | ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); |
| 271 | ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); |
| 272 | ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t); |
| 273 | Quaternion q2 = to_q * ln.exp(); |
| 274 | |
| 275 | // To cancel error made by Expmap ambiguity, do blending. |
| 276 | return q1.slerp(q2, p_weight); |
| 277 | } |
| 278 | |
| 279 | Quaternion::operator String() const { |
| 280 | return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")" ; |
| 281 | } |
| 282 | |
| 283 | Vector3 Quaternion::get_axis() const { |
| 284 | if (Math::abs(w) > 1 - CMP_EPSILON) { |
| 285 | return Vector3(x, y, z); |
| 286 | } |
| 287 | real_t r = ((real_t)1) / Math::sqrt(1 - w * w); |
| 288 | return Vector3(x * r, y * r, z * r); |
| 289 | } |
| 290 | |
| 291 | real_t Quaternion::get_angle() const { |
| 292 | return 2 * Math::acos(w); |
| 293 | } |
| 294 | |
| 295 | Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { |
| 296 | #ifdef MATH_CHECKS |
| 297 | ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized." ); |
| 298 | #endif |
| 299 | real_t d = p_axis.length(); |
| 300 | if (d == 0) { |
| 301 | x = 0; |
| 302 | y = 0; |
| 303 | z = 0; |
| 304 | w = 0; |
| 305 | } else { |
| 306 | real_t sin_angle = Math::sin(p_angle * 0.5f); |
| 307 | real_t cos_angle = Math::cos(p_angle * 0.5f); |
| 308 | real_t s = sin_angle / d; |
| 309 | x = p_axis.x * s; |
| 310 | y = p_axis.y * s; |
| 311 | z = p_axis.z * s; |
| 312 | w = cos_angle; |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | // Euler constructor expects a vector containing the Euler angles in the format |
| 317 | // (ax, ay, az), where ax is the angle of rotation around x axis, |
| 318 | // and similar for other axes. |
| 319 | // This implementation uses YXZ convention (Z is the first rotation). |
| 320 | Quaternion Quaternion::from_euler(const Vector3 &p_euler) { |
| 321 | real_t half_a1 = p_euler.y * 0.5f; |
| 322 | real_t half_a2 = p_euler.x * 0.5f; |
| 323 | real_t half_a3 = p_euler.z * 0.5f; |
| 324 | |
| 325 | // R = Y(a1).X(a2).Z(a3) convention for Euler angles. |
| 326 | // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) |
| 327 | // a3 is the angle of the first rotation, following the notation in this reference. |
| 328 | |
| 329 | real_t cos_a1 = Math::cos(half_a1); |
| 330 | real_t sin_a1 = Math::sin(half_a1); |
| 331 | real_t cos_a2 = Math::cos(half_a2); |
| 332 | real_t sin_a2 = Math::sin(half_a2); |
| 333 | real_t cos_a3 = Math::cos(half_a3); |
| 334 | real_t sin_a3 = Math::sin(half_a3); |
| 335 | |
| 336 | return Quaternion( |
| 337 | sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, |
| 338 | sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, |
| 339 | -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, |
| 340 | sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); |
| 341 | } |
| 342 | |