| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | // |
| 5 | // DacDbiImplStackWalk.cpp |
| 6 | // |
| 7 | |
| 8 | // |
| 9 | // This file contains the implementation of the stackwalking-related functions on the DacDbiInterface. |
| 10 | // |
| 11 | // ====================================================================================== |
| 12 | |
| 13 | #include "stdafx.h" |
| 14 | #include "dacdbiinterface.h" |
| 15 | #include "dacdbiimpl.h" |
| 16 | #include "excepcpu.h" |
| 17 | |
| 18 | #if defined(FEATURE_COMINTEROP) |
| 19 | #include "comtoclrcall.h" |
| 20 | #include "comcallablewrapper.h" |
| 21 | #endif // FEATURE_COMINTEROP |
| 22 | |
| 23 | typedef IDacDbiInterface::StackWalkHandle StackWalkHandle; |
| 24 | |
| 25 | |
| 26 | // Persistent data needed to do a stackwalk. This is allocated on the forDbi heap. |
| 27 | // It can survive across multiple DD calls. |
| 28 | // However, it has data structures that have raw pointers into the DAC cache, and so it must |
| 29 | // be re-iniatialized after each time the Dac cache is flushed. |
| 30 | struct StackWalkData |
| 31 | { |
| 32 | public: |
| 33 | StackWalkData(Thread * pThread, Frame * pFrame, ULONG32 flags) : |
| 34 | m_iterator(pThread, NULL, flags) |
| 35 | { SUPPORTS_DAC; |
| 36 | } |
| 37 | |
| 38 | // Unwrap a handle to get StackWalkData instance. |
| 39 | static StackWalkData * FromHandle(StackWalkHandle handle) |
| 40 | { |
| 41 | SUPPORTS_DAC; |
| 42 | _ASSERTE(handle != NULL); |
| 43 | return reinterpret_cast<StackWalkData *>(handle); |
| 44 | } |
| 45 | |
| 46 | // The stackwalk iterator. This has lots of pointers into the DAC cache. |
| 47 | StackFrameIterator m_iterator; |
| 48 | |
| 49 | // The context buffer, which can be pointed to by the RegDisplay. |
| 50 | T_CONTEXT m_context; |
| 51 | |
| 52 | // A regdisplay used by the stackwalker. |
| 53 | REGDISPLAY m_regdisplay; |
| 54 | }; |
| 55 | |
| 56 | // Helper to allocate stackwalk datastructures for given parameters. |
| 57 | // This is allocated on the local heap (and not via the forDbi allocator on the dac-cache), and then |
| 58 | // freed via code:DacDbiInterfaceImpl::DeleteStackWalk |
| 59 | // |
| 60 | // Throws on error (mainly OOM). |
| 61 | void AllocateStackwalk(StackWalkHandle * pHandle, Thread * pThread, Frame * pFrame, ULONG32 flags) |
| 62 | { |
| 63 | SUPPORTS_DAC; |
| 64 | |
| 65 | StackWalkData * p = new StackWalkData(pThread, NULL, flags); // throews |
| 66 | |
| 67 | StackWalkHandle h = reinterpret_cast<StackWalkHandle>(p); |
| 68 | *pHandle = h; |
| 69 | } |
| 70 | void DeleteStackwalk(StackWalkHandle pHandle) |
| 71 | { |
| 72 | SUPPORTS_DAC; |
| 73 | |
| 74 | StackWalkData * pBuffer = (StackWalkData *) pHandle; |
| 75 | _ASSERTE(pBuffer != NULL); |
| 76 | delete pBuffer; |
| 77 | } |
| 78 | |
| 79 | |
| 80 | // Helper to get the StackFrameIterator from a Stackwalker handle |
| 81 | StackFrameIterator * GetIteratorFromHandle(StackWalkHandle pSFIHandle) |
| 82 | { |
| 83 | SUPPORTS_DAC; |
| 84 | |
| 85 | StackWalkData * pBuffer = StackWalkData::FromHandle(pSFIHandle); |
| 86 | return &(pBuffer->m_iterator); |
| 87 | } |
| 88 | |
| 89 | // Helper to get a RegDisplay from a Stackwalker handle |
| 90 | REGDISPLAY * GetRegDisplayFromHandle(StackWalkHandle pSFIHandle) |
| 91 | { |
| 92 | SUPPORTS_DAC; |
| 93 | StackWalkData * pBuffer = StackWalkData::FromHandle(pSFIHandle); |
| 94 | return &(pBuffer->m_regdisplay); |
| 95 | } |
| 96 | |
| 97 | // Helper to get a Context buffer from a Stackwalker handle |
| 98 | T_CONTEXT * GetContextBufferFromHandle(StackWalkHandle pSFIHandle) |
| 99 | { |
| 100 | SUPPORTS_DAC; |
| 101 | StackWalkData * pBuffer = StackWalkData::FromHandle(pSFIHandle); |
| 102 | return &(pBuffer->m_context); |
| 103 | } |
| 104 | |
| 105 | |
| 106 | // Create and return a stackwalker on the specified thread. |
| 107 | void DacDbiInterfaceImpl::CreateStackWalk(VMPTR_Thread vmThread, |
| 108 | DT_CONTEXT * pInternalContextBuffer, |
| 109 | StackWalkHandle * ppSFIHandle) |
| 110 | { |
| 111 | DD_ENTER_MAY_THROW; |
| 112 | |
| 113 | _ASSERTE(ppSFIHandle != NULL); |
| 114 | |
| 115 | Thread * pThread = vmThread.GetDacPtr(); |
| 116 | |
| 117 | // Set the stackwalk flags. We pretty much want to stop at everything. |
| 118 | DWORD dwFlags = (NOTIFY_ON_U2M_TRANSITIONS | |
| 119 | NOTIFY_ON_NO_FRAME_TRANSITIONS | |
| 120 | NOTIFY_ON_INITIAL_NATIVE_CONTEXT); |
| 121 | |
| 122 | // allocate memory for various stackwalker buffers (StackFrameIterator, RegDisplay, Context) |
| 123 | AllocateStackwalk(ppSFIHandle, pThread, NULL, dwFlags); |
| 124 | |
| 125 | // initialize the the CONTEXT. |
| 126 | // SetStackWalk will initial the RegDisplay from this context. |
| 127 | GetContext(vmThread, pInternalContextBuffer); |
| 128 | |
| 129 | // initialize the stackwalker |
| 130 | SetStackWalkCurrentContext(vmThread, |
| 131 | *ppSFIHandle, |
| 132 | SET_CONTEXT_FLAG_ACTIVE_FRAME, |
| 133 | pInternalContextBuffer); |
| 134 | } |
| 135 | |
| 136 | // Delete the stackwalk object allocated by code:AllocateStackwalk |
| 137 | void DacDbiInterfaceImpl::DeleteStackWalk(StackWalkHandle ppSFIHandle) |
| 138 | { |
| 139 | DeleteStackwalk(ppSFIHandle); |
| 140 | } |
| 141 | |
| 142 | // Get the CONTEXT of the current frame at which the stackwalker is stopped. |
| 143 | void DacDbiInterfaceImpl::GetStackWalkCurrentContext(StackWalkHandle pSFIHandle, |
| 144 | DT_CONTEXT * pContext) |
| 145 | { |
| 146 | DD_ENTER_MAY_THROW; |
| 147 | |
| 148 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
| 149 | |
| 150 | GetStackWalkCurrentContext(pIter, pContext); |
| 151 | } |
| 152 | |
| 153 | // Internal Worker for GetStackWalkCurrentContext(). |
| 154 | void DacDbiInterfaceImpl::GetStackWalkCurrentContext(StackFrameIterator * pIter, |
| 155 | DT_CONTEXT * pContext) |
| 156 | { |
| 157 | // convert the current REGDISPLAY to a CONTEXT |
| 158 | CrawlFrame * pCF = &(pIter->m_crawl); |
| 159 | UpdateContextFromRegDisp(pCF->GetRegisterSet(), reinterpret_cast<T_CONTEXT *>(pContext)); |
| 160 | } |
| 161 | |
| 162 | |
| 163 | |
| 164 | // Set the stackwalker to the specified CONTEXT. |
| 165 | void DacDbiInterfaceImpl::SetStackWalkCurrentContext(VMPTR_Thread vmThread, |
| 166 | StackWalkHandle pSFIHandle, |
| 167 | CorDebugSetContextFlag flag, |
| 168 | DT_CONTEXT * pContext) |
| 169 | { |
| 170 | DD_ENTER_MAY_THROW; |
| 171 | |
| 172 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
| 173 | REGDISPLAY * pRD = GetRegDisplayFromHandle(pSFIHandle); |
| 174 | |
| 175 | #if defined(_DEBUG) |
| 176 | // The caller should have checked this already. |
| 177 | _ASSERTE(CheckContext(vmThread, pContext) == S_OK); |
| 178 | #endif // _DEBUG |
| 179 | |
| 180 | // DD can't keep pointers back into the RS address space. |
| 181 | // Allocate a context in DDImpl's memory space. DDImpl can't contain raw pointers back into |
| 182 | // the client space since that may not marshal. |
| 183 | T_CONTEXT * pContext2 = GetContextBufferFromHandle(pSFIHandle); |
| 184 | *pContext2 = *reinterpret_cast<T_CONTEXT *>(pContext); // memcpy |
| 185 | |
| 186 | // update the REGDISPLAY with the given CONTEXT. |
| 187 | // Be sure that the context is in DDImpl's memory space and not the Right-sides. |
| 188 | FillRegDisplay(pRD, pContext2); |
| 189 | BOOL fSuccess = pIter->ResetRegDisp(pRD, (flag == SET_CONTEXT_FLAG_ACTIVE_FRAME)); |
| 190 | if (!fSuccess) |
| 191 | { |
| 192 | // ResetRegDisp() may fail for the same reason Init() may fail, i.e. |
| 193 | // because the stackwalker tries to unwind one frame ahead of time, |
| 194 | // or because the stackwalker needs to filter out some frames based on the stackwalk flags. |
| 195 | ThrowHR(E_FAIL); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | |
| 200 | // Unwind the stackwalker to the next frame. |
| 201 | BOOL DacDbiInterfaceImpl::UnwindStackWalkFrame(StackWalkHandle pSFIHandle) |
| 202 | { |
| 203 | DD_ENTER_MAY_THROW; |
| 204 | |
| 205 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
| 206 | |
| 207 | CrawlFrame * pCF = &(pIter->m_crawl); |
| 208 | |
| 209 | if ((pIter->GetFrameState() == StackFrameIterator::SFITER_INITIAL_NATIVE_CONTEXT) || |
| 210 | (pIter->GetFrameState() == StackFrameIterator::SFITER_NATIVE_MARKER_FRAME)) |
| 211 | { |
| 212 | if (IsRuntimeUnwindableStub(GetControlPC(pCF->GetRegisterSet()))) |
| 213 | { |
| 214 | // This is a native stack frame which the StackFrameIterator doesn't know how to unwind. |
| 215 | // Use our special unwind logic. |
| 216 | return UnwindRuntimeStackFrame(pIter); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | // On x86, we need to adjust the stack pointer for the callee parameter adjustment. |
| 221 | // This requires us to save the number of bytes used for the stack parameters of the callee. |
| 222 | // Thus, let's save it here before we unwind. |
| 223 | DWORD cbStackParameterSize = 0; |
| 224 | if (pIter->GetFrameState() == StackFrameIterator::SFITER_FRAMELESS_METHOD) |
| 225 | { |
| 226 | cbStackParameterSize = GetStackParameterSize(pCF->GetCodeInfo()); |
| 227 | } |
| 228 | |
| 229 | // If the stackwalker is invalid to begin with, we'll just say that it is at the end of the stack. |
| 230 | BOOL fIsAtEndOfStack = TRUE; |
| 231 | while (pIter->IsValid()) |
| 232 | { |
| 233 | StackWalkAction swa = pIter->Next(); |
| 234 | |
| 235 | if (swa == SWA_FAILED) |
| 236 | { |
| 237 | // The stackwalker is valid to begin with, so this must be a failure case. |
| 238 | ThrowHR(E_FAIL); |
| 239 | } |
| 240 | else if (swa == SWA_CONTINUE) |
| 241 | { |
| 242 | if (pIter->GetFrameState() == StackFrameIterator::SFITER_DONE) |
| 243 | { |
| 244 | // We are at the end of the stack. We will break at the end of the loop and fIsAtEndOfStack |
| 245 | // will be TRUE. |
| 246 | } |
| 247 | else if ((pIter->GetFrameState() == StackFrameIterator::SFITER_FRAME_FUNCTION) || |
| 248 | (pIter->GetFrameState() == StackFrameIterator::SFITER_SKIPPED_FRAME_FUNCTION)) |
| 249 | { |
| 250 | // If the stackwalker is stopped at an explicit frame, unwind directly to the next frame. |
| 251 | // The V3 stackwalker doesn't stop on explicit frames. |
| 252 | continue; |
| 253 | } |
| 254 | else if (pIter->GetFrameState() == StackFrameIterator::SFITER_NO_FRAME_TRANSITION) |
| 255 | { |
| 256 | // No frame transitions are not exposed in V2. |
| 257 | // Just continue onto the next managed stack frame. |
| 258 | continue; |
| 259 | } |
| 260 | else |
| 261 | { |
| 262 | fIsAtEndOfStack = FALSE; |
| 263 | } |
| 264 | } |
| 265 | else |
| 266 | { |
| 267 | UNREACHABLE(); |
| 268 | } |
| 269 | |
| 270 | // If we get here, then we want to stop at this current frame. |
| 271 | break; |
| 272 | } |
| 273 | |
| 274 | if (fIsAtEndOfStack == FALSE) |
| 275 | { |
| 276 | // Currently the only case where we adjust the stack pointer is at M2U transitions. |
| 277 | if (pIter->GetFrameState() == StackFrameIterator::SFITER_NATIVE_MARKER_FRAME) |
| 278 | { |
| 279 | _ASSERTE(!pCF->IsActiveFrame()); |
| 280 | AdjustRegDisplayForStackParameter(pCF->GetRegisterSet(), |
| 281 | cbStackParameterSize, |
| 282 | pCF->IsActiveFrame(), |
| 283 | kFromManagedToUnmanaged); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | return (fIsAtEndOfStack == FALSE); |
| 288 | } |
| 289 | |
| 290 | bool g_fSkipStackCheck = false; |
| 291 | bool g_fSkipStackCheckInit = false; |
| 292 | |
| 293 | // Check whether the specified CONTEXT is valid. The only check we perform right now is whether the |
| 294 | // SP in the specified CONTEXT is in the stack range of the thread. |
| 295 | HRESULT DacDbiInterfaceImpl::CheckContext(VMPTR_Thread vmThread, |
| 296 | const DT_CONTEXT * pContext) |
| 297 | { |
| 298 | DD_ENTER_MAY_THROW; |
| 299 | |
| 300 | // If the SP in the CONTEXT isn't valid, then there's no point in checking. |
| 301 | if ((pContext->ContextFlags & CONTEXT_CONTROL) == 0) |
| 302 | { |
| 303 | return S_OK; |
| 304 | } |
| 305 | |
| 306 | if (!g_fSkipStackCheckInit) |
| 307 | { |
| 308 | g_fSkipStackCheck = (CLRConfig::GetConfigValue(CLRConfig::UNSUPPORTED_DbgSkipStackCheck) != 0); |
| 309 | g_fSkipStackCheckInit = true; |
| 310 | } |
| 311 | |
| 312 | // Skip this check if the customer has set the reg key/env var. This is necessary for AutoCad. They |
| 313 | // enable fiber mode by calling the Win32 API ConvertThreadToFiber(), but when a managed debugger is |
| 314 | // attached, they don't actually call into our hosting APIs such as SwitchInLogicalThreadState(). This |
| 315 | // leads to the cached stack range on the Thread object being stale. |
| 316 | if (!g_fSkipStackCheck) |
| 317 | { |
| 318 | // We don't have the backing store boundaries stored on the thread, but this is just |
| 319 | // a sanity check anyway. |
| 320 | Thread * pThread = vmThread.GetDacPtr(); |
| 321 | PTR_VOID sp = GetSP(reinterpret_cast<const T_CONTEXT *>(pContext)); |
| 322 | |
| 323 | if ((sp < pThread->GetCachedStackLimit()) || (pThread->GetCachedStackBase() <= sp)) |
| 324 | { |
| 325 | return CORDBG_E_NON_MATCHING_CONTEXT; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | return S_OK; |
| 330 | } |
| 331 | |
| 332 | // Retrieve information about the current frame from the stackwalker. |
| 333 | IDacDbiInterface::FrameType DacDbiInterfaceImpl::GetStackWalkCurrentFrameInfo(StackWalkHandle pSFIHandle, |
| 334 | DebuggerIPCE_STRData * pFrameData) |
| 335 | { |
| 336 | DD_ENTER_MAY_THROW; |
| 337 | |
| 338 | _ASSERTE(pSFIHandle != NULL); |
| 339 | |
| 340 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
| 341 | |
| 342 | FrameType ftResult = kInvalid; |
| 343 | if (pIter->GetFrameState() == StackFrameIterator::SFITER_DONE) |
| 344 | { |
| 345 | _ASSERTE(!pIter->IsValid()); |
| 346 | ftResult = kAtEndOfStack; |
| 347 | } |
| 348 | else |
| 349 | { |
| 350 | BOOL fInitFrameData = FALSE; |
| 351 | switch (pIter->GetFrameState()) |
| 352 | { |
| 353 | case StackFrameIterator::SFITER_UNINITIALIZED: |
| 354 | ftResult = kInvalid; |
| 355 | break; |
| 356 | |
| 357 | case StackFrameIterator::SFITER_FRAMELESS_METHOD: |
| 358 | ftResult = kManagedStackFrame; |
| 359 | fInitFrameData = TRUE; |
| 360 | break; |
| 361 | |
| 362 | case StackFrameIterator::SFITER_FRAME_FUNCTION: |
| 363 | // |
| 364 | // fall through |
| 365 | // |
| 366 | case StackFrameIterator::SFITER_SKIPPED_FRAME_FUNCTION: |
| 367 | ftResult = kExplicitFrame; |
| 368 | fInitFrameData = TRUE; |
| 369 | break; |
| 370 | |
| 371 | case StackFrameIterator::SFITER_NO_FRAME_TRANSITION: |
| 372 | // no-frame transition represents an ExInfo for a native exception on x86. |
| 373 | // For all intents and purposes this should be treated just like another explicit frame. |
| 374 | ftResult = kExplicitFrame; |
| 375 | fInitFrameData = TRUE; |
| 376 | break; |
| 377 | |
| 378 | case StackFrameIterator::SFITER_NATIVE_MARKER_FRAME: |
| 379 | // |
| 380 | // fall through |
| 381 | // |
| 382 | case StackFrameIterator::SFITER_INITIAL_NATIVE_CONTEXT: |
| 383 | if (IsRuntimeUnwindableStub(GetControlPC(pIter->m_crawl.GetRegisterSet()))) |
| 384 | { |
| 385 | ftResult = kNativeRuntimeUnwindableStackFrame; |
| 386 | fInitFrameData = TRUE; |
| 387 | } |
| 388 | else |
| 389 | { |
| 390 | ftResult = kNativeStackFrame; |
| 391 | } |
| 392 | break; |
| 393 | |
| 394 | default: |
| 395 | UNREACHABLE(); |
| 396 | } |
| 397 | |
| 398 | if ((fInitFrameData == TRUE) && (pFrameData != NULL)) |
| 399 | { |
| 400 | InitFrameData(pIter, ftResult, pFrameData); |
| 401 | } |
| 402 | } |
| 403 | |
| 404 | return ftResult; |
| 405 | } |
| 406 | |
| 407 | //--------------------------------------------------------------------------------------- |
| 408 | // |
| 409 | // Return the number of internal frames on the specified thread. |
| 410 | // |
| 411 | // Arguments: |
| 412 | // vmThread - the thread to be walked |
| 413 | // |
| 414 | // Return Value: |
| 415 | // Return the number of interesting internal frames on the thread. |
| 416 | // |
| 417 | // Notes: |
| 418 | // Internal frames are interesting if they are not of type STUBFRAME_NONE. |
| 419 | // |
| 420 | |
| 421 | ULONG32 DacDbiInterfaceImpl::GetCountOfInternalFrames(VMPTR_Thread vmThread) |
| 422 | { |
| 423 | DD_ENTER_MAY_THROW; |
| 424 | |
| 425 | Thread * pThread = vmThread.GetDacPtr(); |
| 426 | Frame * pFrame = pThread->GetFrame(); |
| 427 | |
| 428 | // We could call EnumerateInternalFrames() here, but it would be a lot of overhead for what we need. |
| 429 | ULONG32 uCount = 0; |
| 430 | while (pFrame != FRAME_TOP) |
| 431 | { |
| 432 | CorDebugInternalFrameType ift = GetInternalFrameType(pFrame); |
| 433 | if (ift != STUBFRAME_NONE) |
| 434 | { |
| 435 | uCount++; |
| 436 | } |
| 437 | pFrame = pFrame->Next(); |
| 438 | } |
| 439 | return uCount; |
| 440 | } |
| 441 | |
| 442 | //--------------------------------------------------------------------------------------- |
| 443 | // |
| 444 | // Enumerate the internal frames on the specified thread and invoke the provided callback on each of them. |
| 445 | // |
| 446 | // Arguments: |
| 447 | // vmThread - the thread to be walked |
| 448 | // fpCallback - callback function to be invoked for each interesting internal frame |
| 449 | // pUserData - user-defined custom data to be passed to the callback |
| 450 | // |
| 451 | |
| 452 | void DacDbiInterfaceImpl::EnumerateInternalFrames(VMPTR_Thread vmThread, |
| 453 | FP_INTERNAL_FRAME_ENUMERATION_CALLBACK fpCallback, |
| 454 | void * pUserData) |
| 455 | { |
| 456 | DD_ENTER_MAY_THROW; |
| 457 | |
| 458 | DebuggerIPCE_STRData frameData; |
| 459 | |
| 460 | Thread * pThread = vmThread.GetDacPtr(); |
| 461 | Frame * pFrame = pThread->GetFrame(); |
| 462 | AppDomain * pAppDomain = pThread->GetDomain(INDEBUG(TRUE)); |
| 463 | |
| 464 | // This used to be only true for Enter-Managed chains. |
| 465 | // Since we don't have chains anymore, this can always be false. |
| 466 | frameData.quicklyUnwound = false; |
| 467 | frameData.eType = DebuggerIPCE_STRData::cStubFrame; |
| 468 | |
| 469 | while (pFrame != FRAME_TOP) |
| 470 | { |
| 471 | // check if the internal frame is interesting |
| 472 | frameData.stubFrame.frameType = GetInternalFrameType(pFrame); |
| 473 | if (frameData.stubFrame.frameType != STUBFRAME_NONE) |
| 474 | { |
| 475 | frameData.fp = FramePointer::MakeFramePointer(PTR_HOST_TO_TADDR(pFrame)); |
| 476 | |
| 477 | frameData.vmCurrentAppDomainToken.SetHostPtr(pAppDomain); |
| 478 | |
| 479 | MethodDesc * pMD = pFrame->GetFunction(); |
| 480 | #if defined(FEATURE_COMINTEROP) |
| 481 | if (frameData.stubFrame.frameType == STUBFRAME_U2M) |
| 482 | { |
| 483 | _ASSERTE(pMD == NULL); |
| 484 | |
| 485 | // U2M transition frame generally don't store the target MD because we know what the target |
| 486 | // is by looking at the callee stack frame. However, for reverse COM interop, we can try |
| 487 | // to get the MD for the interface. |
| 488 | // |
| 489 | // Note that some reverse COM interop cases don't have an intermediate interface MD, so |
| 490 | // pMD may still be NULL. |
| 491 | // |
| 492 | // Even if there is an MD on the ComMethodFrame, it could be in a different appdomain than |
| 493 | // the ComMethodFrame itself. The only known scenario is a cross-appdomain reverse COM |
| 494 | // interop call. We need to check for this case. The end result is that GetFunction() and |
| 495 | // GetFunctionToken() on ICDInternalFrame will return NULL. |
| 496 | |
| 497 | // Minidumps without full memory don't guarantee to capture the CCW since we can do without |
| 498 | // it. In this case, pMD will remain NULL. |
| 499 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY |
| 500 | { |
| 501 | if (pFrame->GetVTablePtr() == ComMethodFrame::GetMethodFrameVPtr()) |
| 502 | { |
| 503 | ComMethodFrame * pCOMFrame = dac_cast<PTR_ComMethodFrame>(pFrame); |
| 504 | PTR_VOID pUnkStackSlot = pCOMFrame->GetPointerToArguments(); |
| 505 | PTR_IUnknown pUnk = dac_cast<PTR_IUnknown>(*dac_cast<PTR_TADDR>(pUnkStackSlot)); |
| 506 | ComCallWrapper * pCCW = ComCallWrapper::GetWrapperFromIP(pUnk); |
| 507 | |
| 508 | ComCallMethodDesc * pCMD = NULL; |
| 509 | pCMD = dac_cast<PTR_ComCallMethodDesc>(pCOMFrame->ComMethodFrame::GetDatum()); |
| 510 | pMD = pCMD->GetInterfaceMethodDesc(); |
| 511 | } |
| 512 | } |
| 513 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY |
| 514 | } |
| 515 | #endif // FEATURE_COMINTEROP |
| 516 | |
| 517 | Module * pModule = (pMD ? pMD->GetModule() : NULL); |
| 518 | DomainFile * pDomainFile = (pModule ? pModule->GetDomainFile(pAppDomain) : NULL); |
| 519 | |
| 520 | if (frameData.stubFrame.frameType == STUBFRAME_FUNC_EVAL) |
| 521 | { |
| 522 | FuncEvalFrame * pFEF = dac_cast<PTR_FuncEvalFrame>(pFrame); |
| 523 | DebuggerEval * pDE = pFEF->GetDebuggerEval(); |
| 524 | |
| 525 | frameData.stubFrame.funcMetadataToken = pDE->m_methodToken; |
| 526 | frameData.stubFrame.vmDomainFile.SetHostPtr( |
| 527 | pDE->m_debuggerModule ? pDE->m_debuggerModule->GetDomainFile() : NULL); |
| 528 | frameData.stubFrame.vmMethodDesc = VMPTR_MethodDesc::NullPtr(); |
| 529 | } |
| 530 | else |
| 531 | { |
| 532 | frameData.stubFrame.funcMetadataToken = (pMD == NULL ? NULL : pMD->GetMemberDef()); |
| 533 | frameData.stubFrame.vmDomainFile.SetHostPtr(pDomainFile); |
| 534 | frameData.stubFrame.vmMethodDesc.SetHostPtr(pMD); |
| 535 | } |
| 536 | |
| 537 | // invoke the callback |
| 538 | fpCallback(&frameData, pUserData); |
| 539 | } |
| 540 | |
| 541 | // update the current appdomain if necessary |
| 542 | AppDomain * pRetDomain = pFrame->GetReturnDomain(); |
| 543 | if (pRetDomain != NULL) |
| 544 | { |
| 545 | pAppDomain = pRetDomain; |
| 546 | } |
| 547 | |
| 548 | // move on to the next internal frame |
| 549 | pFrame = pFrame->Next(); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | // Given the FramePointer of the parent frame and the FramePointer of the current frame, |
| 554 | // check if the current frame is the parent frame. |
| 555 | BOOL DacDbiInterfaceImpl::IsMatchingParentFrame(FramePointer fpToCheck, FramePointer fpParent) |
| 556 | { |
| 557 | DD_ENTER_MAY_THROW; |
| 558 | |
| 559 | #ifdef WIN64EXCEPTIONS |
| 560 | StackFrame sfToCheck = StackFrame((UINT_PTR)fpToCheck.GetSPValue()); |
| 561 | |
| 562 | StackFrame sfParent = StackFrame((UINT_PTR)fpParent.GetSPValue()); |
| 563 | |
| 564 | // Ask the ExceptionTracker to figure out the answer. |
| 565 | // Don't try to compare the StackFrames/FramePointers ourselves. |
| 566 | return ExceptionTracker::IsUnwoundToTargetParentFrame(sfToCheck, sfParent); |
| 567 | |
| 568 | #else // !WIN64EXCEPTIONS |
| 569 | return FALSE; |
| 570 | |
| 571 | #endif // WIN64EXCEPTIONS |
| 572 | } |
| 573 | |
| 574 | // Return the stack parameter size of the given method. |
| 575 | ULONG32 DacDbiInterfaceImpl::GetStackParameterSize(CORDB_ADDRESS controlPC) |
| 576 | { |
| 577 | DD_ENTER_MAY_THROW; |
| 578 | |
| 579 | PCODE currentPC = PCODE(controlPC); |
| 580 | |
| 581 | EECodeInfo codeInfo(currentPC); |
| 582 | return GetStackParameterSize(&codeInfo); |
| 583 | } |
| 584 | |
| 585 | // Return the FramePointer of the current frame at which the stackwalker is stopped. |
| 586 | FramePointer DacDbiInterfaceImpl::GetFramePointer(StackWalkHandle pSFIHandle) |
| 587 | { |
| 588 | DD_ENTER_MAY_THROW; |
| 589 | |
| 590 | StackFrameIterator * pIter = GetIteratorFromHandle(pSFIHandle); |
| 591 | return GetFramePointerWorker(pIter); |
| 592 | } |
| 593 | |
| 594 | // Internal helper for GetFramePointer. |
| 595 | FramePointer DacDbiInterfaceImpl::GetFramePointerWorker(StackFrameIterator * pIter) |
| 596 | { |
| 597 | CrawlFrame * pCF = &(pIter->m_crawl); |
| 598 | REGDISPLAY * pRD = pCF->GetRegisterSet(); |
| 599 | |
| 600 | FramePointer fp; |
| 601 | switch (pIter->GetFrameState()) |
| 602 | { |
| 603 | // For managed methods, we have the full CONTEXT. Additionally, we also have the caller CONTEXT |
| 604 | // on WIN64. |
| 605 | case StackFrameIterator::SFITER_FRAMELESS_METHOD: |
| 606 | fp = FramePointer::MakeFramePointer(GetRegdisplayStackMark(pRD)); |
| 607 | break; |
| 608 | |
| 609 | // In these cases, we only have the full CONTEXT, not the caller CONTEXT. |
| 610 | case StackFrameIterator::SFITER_NATIVE_MARKER_FRAME: |
| 611 | // |
| 612 | // fall through |
| 613 | // |
| 614 | case StackFrameIterator::SFITER_INITIAL_NATIVE_CONTEXT: |
| 615 | fp = FramePointer::MakeFramePointer(GetRegdisplayStackMark(pRD)); |
| 616 | break; |
| 617 | |
| 618 | // In these cases, we use the address of the explicit frame as the frame marker. |
| 619 | case StackFrameIterator::SFITER_FRAME_FUNCTION: |
| 620 | // |
| 621 | // fall through |
| 622 | // |
| 623 | case StackFrameIterator::SFITER_SKIPPED_FRAME_FUNCTION: |
| 624 | fp = FramePointer::MakeFramePointer(PTR_HOST_TO_TADDR(pCF->GetFrame())); |
| 625 | break; |
| 626 | |
| 627 | // No-frame transition represents an ExInfo for a native exception on x86. |
| 628 | // For all intents and purposes this should be treated just like another explicit frame. |
| 629 | case StackFrameIterator::SFITER_NO_FRAME_TRANSITION: |
| 630 | fp = FramePointer::MakeFramePointer(pCF->GetNoFrameTransitionMarker()); |
| 631 | break; |
| 632 | |
| 633 | case StackFrameIterator::SFITER_UNINITIALIZED: |
| 634 | // |
| 635 | // fall through |
| 636 | // |
| 637 | default: |
| 638 | UNREACHABLE(); |
| 639 | } |
| 640 | |
| 641 | return fp; |
| 642 | } |
| 643 | |
| 644 | // Return TRUE if the specified CONTEXT is the CONTEXT of the leaf frame. |
| 645 | // @dbgtodo filter CONTEXT - Currently we check for the filter CONTEXT first. |
| 646 | BOOL DacDbiInterfaceImpl::IsLeafFrame(VMPTR_Thread vmThread, |
| 647 | const DT_CONTEXT * pContext) |
| 648 | { |
| 649 | DD_ENTER_MAY_THROW; |
| 650 | |
| 651 | DT_CONTEXT ctxLeaf; |
| 652 | GetContext(vmThread, &ctxLeaf); |
| 653 | |
| 654 | // Call a platform-specific helper to compare the two contexts. |
| 655 | return CompareControlRegisters(pContext, &ctxLeaf); |
| 656 | } |
| 657 | |
| 658 | // This is a simple helper function to convert a CONTEXT to a DebuggerREGDISPLAY. We need to do this |
| 659 | // inside DDI because the RS has no notion of REGDISPLAY. |
| 660 | void DacDbiInterfaceImpl::ConvertContextToDebuggerRegDisplay(const DT_CONTEXT * pInContext, |
| 661 | DebuggerREGDISPLAY * pOutDRD, |
| 662 | BOOL fActive) |
| 663 | { |
| 664 | DD_ENTER_MAY_THROW; |
| 665 | |
| 666 | // This is a bit cumbersome. First we need to convert the CONTEXT into a REGDISPLAY. Then we need |
| 667 | // to convert the REGDISPLAY to a DebuggerREGDISPLAY. |
| 668 | REGDISPLAY rd; |
| 669 | FillRegDisplay(&rd, reinterpret_cast<T_CONTEXT *>(const_cast<DT_CONTEXT *>(pInContext))); |
| 670 | SetDebuggerREGDISPLAYFromREGDISPLAY(pOutDRD, &rd); |
| 671 | } |
| 672 | |
| 673 | //--------------------------------------------------------------------------------------- |
| 674 | // |
| 675 | // Fill in the structure with information about the current frame at which the stackwalker is stopped. |
| 676 | // |
| 677 | // Arguments: |
| 678 | // pIter - the stackwalker |
| 679 | // pFrameData - the structure to be filled out |
| 680 | // |
| 681 | |
| 682 | void DacDbiInterfaceImpl::InitFrameData(StackFrameIterator * pIter, |
| 683 | FrameType ft, |
| 684 | DebuggerIPCE_STRData * pFrameData) |
| 685 | { |
| 686 | CrawlFrame * pCF = &(pIter->m_crawl); |
| 687 | |
| 688 | // |
| 689 | // do common initialization of DebuggerIPCE_STRData for both managed stack frames and explicit frames |
| 690 | // |
| 691 | |
| 692 | pFrameData->fp = GetFramePointerWorker(pIter); |
| 693 | |
| 694 | // This used to be only true for Enter-Managed chains. |
| 695 | // Since we don't have chains anymore, this can always be false. |
| 696 | pFrameData->quicklyUnwound = false; |
| 697 | |
| 698 | AppDomain * pAppDomain = pCF->GetAppDomain(); |
| 699 | pFrameData->vmCurrentAppDomainToken.SetHostPtr(pAppDomain); |
| 700 | |
| 701 | if (ft == kNativeRuntimeUnwindableStackFrame) |
| 702 | { |
| 703 | pFrameData->eType = DebuggerIPCE_STRData::cRuntimeNativeFrame; |
| 704 | |
| 705 | GetStackWalkCurrentContext(pIter, &(pFrameData->ctx)); |
| 706 | } |
| 707 | else if (ft == kManagedStackFrame) |
| 708 | { |
| 709 | MethodDesc * pMD = pCF->GetFunction(); |
| 710 | Module * pModule = (pMD ? pMD->GetModule() : NULL); |
| 711 | // Although MiniDumpNormal tries to dump all AppDomains, it's possible |
| 712 | // target corruption will keep one from being present. This should mean |
| 713 | // we'll just fail later, but struggle on for now. |
| 714 | DomainFile *pDomainFile = NULL; |
| 715 | EX_TRY_ALLOW_DATATARGET_MISSING_MEMORY |
| 716 | { |
| 717 | pDomainFile = (pModule ? pModule->GetDomainFile(pAppDomain) : NULL); |
| 718 | _ASSERTE(pDomainFile != NULL); |
| 719 | } |
| 720 | EX_END_CATCH_ALLOW_DATATARGET_MISSING_MEMORY |
| 721 | |
| 722 | // |
| 723 | // This is a managed stack frame. |
| 724 | // |
| 725 | |
| 726 | _ASSERTE(pMD != NULL); |
| 727 | _ASSERTE(pModule != NULL); |
| 728 | |
| 729 | // |
| 730 | // initialize the rest of the DebuggerIPCE_STRData |
| 731 | // |
| 732 | |
| 733 | pFrameData->eType = DebuggerIPCE_STRData::cMethodFrame; |
| 734 | |
| 735 | SetDebuggerREGDISPLAYFromREGDISPLAY(&(pFrameData->rd), pCF->GetRegisterSet()); |
| 736 | |
| 737 | GetStackWalkCurrentContext(pIter, &(pFrameData->ctx)); |
| 738 | |
| 739 | // |
| 740 | // initialize the fields in DebuggerIPCE_STRData::v |
| 741 | // |
| 742 | |
| 743 | // These fields will be filled in later. We don't have the sequence point mapping information here. |
| 744 | pFrameData->v.ILOffset = (SIZE_T)(-1); |
| 745 | pFrameData->v.mapping = MAPPING_NO_INFO; |
| 746 | |
| 747 | // Check if this is a vararg method by getting the managed calling convention from the signature. |
| 748 | // Strictly speaking, we can do this in CordbJITILFrame::Init(), but it's just easier and more |
| 749 | // efficiently to do it here. CordbJITILFrame::Init() will initialize the other vararg-related |
| 750 | // fields. We don't have the native var info here to fully initialize everything. |
| 751 | pFrameData->v.fVarArgs = (pMD->IsVarArg() == TRUE); |
| 752 | |
| 753 | pFrameData->v.fNoMetadata = (pMD->IsNoMetadata() == TRUE); |
| 754 | |
| 755 | pFrameData->v.taAmbientESP = pCF->GetAmbientSPFromCrawlFrame(); |
| 756 | if (pMD->IsSharedByGenericInstantiations()) |
| 757 | { |
| 758 | // This method has a generic type token which is required to figure out the exact instantiation |
| 759 | // of the method. CrawlFrame::GetExactGenericArgsToken() can't always successfully retrieve |
| 760 | // the token because the JIT doesn't generate the required information all the time. As such, |
| 761 | // we need to save the variable index of the generic type token in order to do the look up later. |
| 762 | ALLOW_DATATARGET_MISSING_MEMORY( |
| 763 | pFrameData->v.exactGenericArgsToken = (GENERICS_TYPE_TOKEN)(dac_cast<TADDR>(pCF->GetExactGenericArgsToken())); |
| 764 | ); |
| 765 | |
| 766 | if (pMD->AcquiresInstMethodTableFromThis()) |
| 767 | { |
| 768 | // The generic type token is the "this" object. |
| 769 | pFrameData->v.dwExactGenericArgsTokenIndex = 0; |
| 770 | } |
| 771 | else |
| 772 | { |
| 773 | // The generic type token is one of the secret arguments. |
| 774 | pFrameData->v.dwExactGenericArgsTokenIndex = (DWORD)ICorDebugInfo::TYPECTXT_ILNUM; |
| 775 | } |
| 776 | } |
| 777 | else |
| 778 | { |
| 779 | pFrameData->v.exactGenericArgsToken = NULL; |
| 780 | pFrameData->v.dwExactGenericArgsTokenIndex = (DWORD)ICorDebugInfo::MAX_ILNUM; |
| 781 | } |
| 782 | |
| 783 | // |
| 784 | // initialize the DebuggerIPCE_FuncData and DebuggerIPCE_JITFuncData |
| 785 | // |
| 786 | |
| 787 | DebuggerIPCE_FuncData * pFuncData = &(pFrameData->v.funcData); |
| 788 | DebuggerIPCE_JITFuncData * pJITFuncData = &(pFrameData->v.jitFuncData); |
| 789 | |
| 790 | // |
| 791 | // initialize the "easy" fields of DebuggerIPCE_FuncData |
| 792 | // |
| 793 | |
| 794 | pFuncData->funcMetadataToken = pMD->GetMemberDef(); |
| 795 | pFuncData->vmDomainFile.SetHostPtr(pDomainFile); |
| 796 | |
| 797 | // PERF: this is expensive to get so I stopped fetching it eagerly |
| 798 | // It is only needed if we haven't already got a cached copy |
| 799 | pFuncData->classMetadataToken = mdTokenNil; |
| 800 | |
| 801 | // |
| 802 | // initialize the remaining fields of DebuggerIPCE_FuncData to the default values |
| 803 | // |
| 804 | |
| 805 | pFuncData->ilStartAddress = NULL; |
| 806 | pFuncData->ilSize = 0; |
| 807 | pFuncData->currentEnCVersion = CorDB_DEFAULT_ENC_FUNCTION_VERSION; |
| 808 | pFuncData->localVarSigToken = mdSignatureNil; |
| 809 | |
| 810 | // |
| 811 | // inititalize the fields of DebuggerIPCE_JITFuncData |
| 812 | // |
| 813 | |
| 814 | // For MiniDumpNormal, we do not guarantee method region info for all JIT tokens |
| 815 | // is present in the dump. |
| 816 | ALLOW_DATATARGET_MISSING_MEMORY( |
| 817 | pJITFuncData->nativeStartAddressPtr = PCODEToPINSTR(pCF->GetCodeInfo()->GetStartAddress()); |
| 818 | ); |
| 819 | |
| 820 | // PERF: this is expensive to get so I stopped fetching it eagerly |
| 821 | // It is only needed if we haven't already got a cached copy |
| 822 | pJITFuncData->nativeHotSize = 0; |
| 823 | pJITFuncData->nativeStartAddressColdPtr = 0; |
| 824 | pJITFuncData->nativeColdSize = 0; |
| 825 | |
| 826 | pJITFuncData->nativeOffset = pCF->GetRelOffset(); |
| 827 | |
| 828 | // Here we detect (and set the appropriate flag) if the nativeOffset in the current frame points to the return address of IL_Throw() |
| 829 | // (or other exception related JIT helpers like IL_Throw, IL_Rethrow, JIT_RngChkFail, IL_VerificationError, JIT_Overflow etc). |
| 830 | // Since return addres point to the next(!) instruction after [call IL_Throw] this sometimes can lead to incorrect exception stacktraces |
| 831 | // where a next source line is spotted as an exception origin. This happends when the next instruction after [call IL_Throw] belongs to |
| 832 | // a sequence point and a source line different from a sequence point and a source line of [call IL_Throw]. |
| 833 | // Later on this flag is used in order to adjust nativeOffset and make ICorDebugILFrame::GetIP return IL offset withing |
| 834 | // the same sequence point as an actuall IL throw instruction. |
| 835 | |
| 836 | // Here is how we detect it: |
| 837 | // We can assume that nativeOffset points to an the instruction after [call IL_Throw] when these conditioins are met: |
| 838 | // 1. pCF->IsInterrupted() - Exception has been thrown by this managed frame (frame attr FRAME_ATTR_EXCEPTION) |
| 839 | // 2. !pCF->HasFaulted() - It wasn't a "hardware" exception (Access violation, dev by 0, etc.) |
| 840 | // 3. !pCF->IsIPadjusted() - It hasn't been previously adjusted to point to [call IL_Throw] |
| 841 | // 4. pJITFuncData->nativeOffset != 0 - nativeOffset contains something that looks like a real return address. |
| 842 | pJITFuncData->jsutAfterILThrow = pCF->IsInterrupted() |
| 843 | && !pCF->HasFaulted() |
| 844 | && !pCF->IsIPadjusted() |
| 845 | && pJITFuncData->nativeOffset != 0; |
| 846 | |
| 847 | pJITFuncData->nativeCodeJITInfoToken.Set(NULL); |
| 848 | pJITFuncData->vmNativeCodeMethodDescToken.SetHostPtr(pMD); |
| 849 | |
| 850 | InitParentFrameInfo(pCF, pJITFuncData); |
| 851 | |
| 852 | ALLOW_DATATARGET_MISSING_MEMORY( |
| 853 | pJITFuncData->isInstantiatedGeneric = pMD->HasClassOrMethodInstantiation(); |
| 854 | ); |
| 855 | pJITFuncData->enCVersion = CorDB_DEFAULT_ENC_FUNCTION_VERSION; |
| 856 | |
| 857 | // PERF: this is expensive to get so I stopped fetching it eagerly |
| 858 | // It is only needed if we haven't already got a cached copy |
| 859 | pFuncData->localVarSigToken = 0; |
| 860 | pFuncData->ilStartAddress = 0; |
| 861 | pFuncData->ilSize = 0; |
| 862 | |
| 863 | |
| 864 | // See the comment for LookupEnCVersions(). |
| 865 | // PERF: this is expensive to get so I stopped fetching it eagerly |
| 866 | pFuncData->currentEnCVersion = 0; |
| 867 | pJITFuncData->enCVersion = 0; |
| 868 | } |
| 869 | else |
| 870 | { |
| 871 | _ASSERTE(!"DDII::InitFrameData() - We should never stop at internal frames." ); |
| 872 | ThrowHR(CORDBG_E_TARGET_INCONSISTENT); |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | //--------------------------------------------------------------------------------------- |
| 877 | // |
| 878 | // Initialize the address and the size of the jitted code, including both hot and cold regions. |
| 879 | // |
| 880 | // Arguments: |
| 881 | // methodToken - METHODTOKEN of the method in question; this should actually be the CodeHeader address |
| 882 | // pJITFuncData - structure to be filled out |
| 883 | // |
| 884 | |
| 885 | void DacDbiInterfaceImpl::InitNativeCodeAddrAndSize(TADDR taStartAddr, |
| 886 | DebuggerIPCE_JITFuncData * pJITFuncData) |
| 887 | { |
| 888 | PTR_CORDB_ADDRESS_TYPE pAddr = dac_cast<PTR_CORDB_ADDRESS_TYPE>(taStartAddr); |
| 889 | CodeRegionInfo crInfo = CodeRegionInfo::GetCodeRegionInfo(NULL, NULL, pAddr); |
| 890 | |
| 891 | pJITFuncData->nativeStartAddressPtr = PCODEToPINSTR(crInfo.getAddrOfHotCode()); |
| 892 | pJITFuncData->nativeHotSize = crInfo.getSizeOfHotCode(); |
| 893 | |
| 894 | pJITFuncData->nativeStartAddressColdPtr = PCODEToPINSTR(crInfo.getAddrOfColdCode()); |
| 895 | pJITFuncData->nativeColdSize = crInfo.getSizeOfColdCode(); |
| 896 | } |
| 897 | |
| 898 | //--------------------------------------------------------------------------------------- |
| 899 | // |
| 900 | // Initialize the funclet-related fields of DebuggerIPCE_JITFuncData. This is an nop on non-WIN64 platforms. |
| 901 | // |
| 902 | // Arguments: |
| 903 | // pCF - the CrawlFrame for the current frame |
| 904 | // pJITFuncData - the structure to be filled out |
| 905 | // |
| 906 | |
| 907 | void DacDbiInterfaceImpl::InitParentFrameInfo(CrawlFrame * pCF, |
| 908 | DebuggerIPCE_JITFuncData * pJITFuncData) |
| 909 | { |
| 910 | #ifdef WIN64EXCEPTIONS |
| 911 | pJITFuncData->fIsFilterFrame = pCF->IsFilterFunclet(); |
| 912 | |
| 913 | if (pCF->IsFunclet()) |
| 914 | { |
| 915 | DWORD dwParentOffset; |
| 916 | StackFrame sfParent = ExceptionTracker::FindParentStackFrameEx(pCF, &dwParentOffset, NULL); |
| 917 | |
| 918 | // |
| 919 | // For funclets, fpParentOrSelf is the FramePointer of the parent. |
| 920 | // Don't mess around with this FramePointer. The only thing we can do with it is to pass it back |
| 921 | // to the ExceptionTracker when we are checking if a particular frame is the parent frame. |
| 922 | // |
| 923 | |
| 924 | pJITFuncData->fpParentOrSelf = FramePointer::MakeFramePointer(sfParent.SP); |
| 925 | pJITFuncData->parentNativeOffset = dwParentOffset; |
| 926 | } |
| 927 | else |
| 928 | { |
| 929 | StackFrame sfSelf = ExceptionTracker::GetStackFrameForParentCheck(pCF); |
| 930 | |
| 931 | // |
| 932 | // For non-funclets, fpParentOrSelf is the FramePointer of the current frame itself. |
| 933 | // Don't mess around with this FramePointer. The only thing we can do with it is to pass it back |
| 934 | // to the ExceptionTracker when we are checking if a particular frame is the parent frame. |
| 935 | // |
| 936 | |
| 937 | pJITFuncData->fpParentOrSelf = FramePointer::MakeFramePointer(sfSelf.SP); |
| 938 | pJITFuncData->parentNativeOffset = 0; |
| 939 | } |
| 940 | #endif // WIN64EXCEPTIONS |
| 941 | } |
| 942 | |
| 943 | // Return the stack parameter size of the given method. |
| 944 | // Refer to the full comment for the overloaded version. |
| 945 | ULONG32 DacDbiInterfaceImpl::GetStackParameterSize(EECodeInfo * pCodeInfo) |
| 946 | { |
| 947 | return pCodeInfo->GetCodeManager()->GetStackParameterSize(pCodeInfo); |
| 948 | } |
| 949 | |
| 950 | |
| 951 | //--------------------------------------------------------------------------------------- |
| 952 | // |
| 953 | // Adjust the stack pointer in the CONTEXT for the stack parameters. |
| 954 | // This is a nop on non-x86 platforms. |
| 955 | // |
| 956 | // Arguments: |
| 957 | // pRD - the REGDISPLAY to be adjusted |
| 958 | // cbStackParameterSize - the number of bytes for the stack parameters |
| 959 | // fIsActiveFrame - whether the CONTEXT is for an active frame |
| 960 | // StackAdjustmentDirection - whether we are changing a CONTEXT from the managed convention |
| 961 | // to the unmanaged convention |
| 962 | // |
| 963 | // Notes: |
| 964 | // Consider this code: |
| 965 | // |
| 966 | // push 1 |
| 967 | // push 2 |
| 968 | // call Foo |
| 969 | // -> inc eax |
| 970 | // |
| 971 | // Here we are assuming that the return instruction in Foo() pops the stack arguments. |
| 972 | // |
| 973 | // Suppose the IP in the CONTEXT is at the arrow. The question is, where should the stack pointer be? |
| 974 | // |
| 975 | // 0x0 ret addr for Foo |
| 976 | // 0x4 2 |
| 977 | // 0x8 1 |
| 978 | // 0xc ..... |
| 979 | // |
| 980 | // If the CONTEXT is the active frame, i.e. the IP is the active instruction, |
| 981 | // not the instruction at the return address, then the SP should be at 0xc. |
| 982 | // However, if the CONTEXT is not active, then the SP can be at either 0x4 or 0xc, depending on |
| 983 | // the convention used by the stackwalker. The managed stackwalker reports 0xc, but dbghelp reports |
| 984 | // 0x4. To bridge the gap we have to shim it in the DDI. |
| 985 | // |
| 986 | // Currently, we have no way to reliably shim the CONTEXT in all cases. Consider this stack, |
| 987 | // where U* are native stack frames and M* are managed stack frames: |
| 988 | // |
| 989 | // [leaf] |
| 990 | // U2 |
| 991 | // U1 |
| 992 | // ------- (M2U transition) |
| 993 | // M2 |
| 994 | // M1 |
| 995 | // M0 |
| 996 | // ------- (U2M transition) |
| 997 | // U0 |
| 998 | // [root] |
| 999 | // |
| 1000 | // There are only two transition cases where we can reliably adjust for the callee stack parameter size: |
| 1001 | // 1) when the debugger calls SetContext() with the CONTEXT of the first managed stack frame in a |
| 1002 | // managed stack chain (i.e. SetContext() with M2's CONTEXT) |
| 1003 | // - the M2U transition is protected by an explicit frame (aka Frame-chain frame) |
| 1004 | // 2) when the debugger calls GetContext() on the first native stack frame in a native stack chain |
| 1005 | // (i.e. GetContext() at U0) |
| 1006 | // - we unwind from M0 to U0, so we know the stack parameter size of M0 |
| 1007 | // |
| 1008 | // If we want to do the adjustment in all cases, we need to ask the JIT to store the callee stack |
| 1009 | // parameter size in either the unwind info. |
| 1010 | // |
| 1011 | |
| 1012 | void DacDbiInterfaceImpl::AdjustRegDisplayForStackParameter(REGDISPLAY * pRD, |
| 1013 | DWORD cbStackParameterSize, |
| 1014 | BOOL fIsActiveFrame, |
| 1015 | StackAdjustmentDirection direction) |
| 1016 | { |
| 1017 | #if defined(_TARGET_X86_) |
| 1018 | // If the CONTEXT is active then no adjustment is needed. |
| 1019 | if (!fIsActiveFrame) |
| 1020 | { |
| 1021 | UINT_PTR sp = GetRegdisplaySP(pRD); |
| 1022 | if (direction == kFromManagedToUnmanaged) |
| 1023 | { |
| 1024 | // The CONTEXT comes from the managed world. |
| 1025 | sp -= cbStackParameterSize; |
| 1026 | } |
| 1027 | else |
| 1028 | { |
| 1029 | _ASSERTE(!"Currently, we should not hit this case.\n" ); |
| 1030 | |
| 1031 | // The CONTEXT comes from the unmanaged world. |
| 1032 | sp += cbStackParameterSize; |
| 1033 | } |
| 1034 | SetRegdisplaySP(pRD, reinterpret_cast<LPVOID>(sp)); |
| 1035 | } |
| 1036 | #endif // _TARGET_X86_ |
| 1037 | } |
| 1038 | |
| 1039 | //--------------------------------------------------------------------------------------- |
| 1040 | // |
| 1041 | // Given an explicit frame, return its frame type in terms of CorDebugInternalFrameType. |
| 1042 | // |
| 1043 | // Arguments: |
| 1044 | // pFrame - the explicit frame in question |
| 1045 | // |
| 1046 | // Return Value: |
| 1047 | // Return the CorDebugInternalFrameType of the explicit frame |
| 1048 | // |
| 1049 | // Notes: |
| 1050 | // I wish this function were simpler, but it's not. The logic in this function is adopted |
| 1051 | // from the logic in the old in-proc debugger stackwalker. |
| 1052 | // |
| 1053 | |
| 1054 | CorDebugInternalFrameType DacDbiInterfaceImpl::GetInternalFrameType(Frame * pFrame) |
| 1055 | { |
| 1056 | CorDebugInternalFrameType resultType = STUBFRAME_NONE; |
| 1057 | |
| 1058 | Frame::ETransitionType tt = pFrame->GetTransitionType(); |
| 1059 | Frame::Interception it = pFrame->GetInterception(); |
| 1060 | int ft = pFrame->GetFrameType(); |
| 1061 | |
| 1062 | switch (tt) |
| 1063 | { |
| 1064 | case Frame::TT_NONE: |
| 1065 | if (it == Frame::INTERCEPTION_CLASS_INIT) |
| 1066 | { |
| 1067 | resultType = STUBFRAME_CLASS_INIT; |
| 1068 | } |
| 1069 | else if (it == Frame::INTERCEPTION_EXCEPTION) |
| 1070 | { |
| 1071 | resultType = STUBFRAME_EXCEPTION; |
| 1072 | } |
| 1073 | else if (it == Frame::INTERCEPTION_SECURITY) |
| 1074 | { |
| 1075 | resultType = STUBFRAME_SECURITY; |
| 1076 | } |
| 1077 | else if (it == Frame::INTERCEPTION_PRESTUB) |
| 1078 | { |
| 1079 | resultType = STUBFRAME_JIT_COMPILATION; |
| 1080 | } |
| 1081 | else |
| 1082 | { |
| 1083 | if (ft == Frame::TYPE_FUNC_EVAL) |
| 1084 | { |
| 1085 | resultType = STUBFRAME_FUNC_EVAL; |
| 1086 | } |
| 1087 | else if (ft == Frame::TYPE_EXIT) |
| 1088 | { |
| 1089 | if ((pFrame->GetVTablePtr() != InlinedCallFrame::GetMethodFrameVPtr()) || |
| 1090 | InlinedCallFrame::FrameHasActiveCall(pFrame)) |
| 1091 | { |
| 1092 | resultType = STUBFRAME_M2U; |
| 1093 | } |
| 1094 | } |
| 1095 | } |
| 1096 | break; |
| 1097 | |
| 1098 | case Frame::TT_M2U: |
| 1099 | // Refer to the comment in DebuggerWalkStackProc() for StubDispatchFrame. |
| 1100 | if (pFrame->GetVTablePtr() != StubDispatchFrame::GetMethodFrameVPtr()) |
| 1101 | { |
| 1102 | if (it == Frame::INTERCEPTION_SECURITY) |
| 1103 | { |
| 1104 | resultType = STUBFRAME_SECURITY; |
| 1105 | } |
| 1106 | else |
| 1107 | { |
| 1108 | resultType = STUBFRAME_M2U; |
| 1109 | } |
| 1110 | } |
| 1111 | break; |
| 1112 | |
| 1113 | case Frame::TT_U2M: |
| 1114 | resultType = STUBFRAME_U2M; |
| 1115 | break; |
| 1116 | |
| 1117 | case Frame::TT_AppDomain: |
| 1118 | resultType = STUBFRAME_APPDOMAIN_TRANSITION; |
| 1119 | break; |
| 1120 | |
| 1121 | case Frame::TT_InternalCall: |
| 1122 | if (it == Frame::INTERCEPTION_EXCEPTION) |
| 1123 | { |
| 1124 | resultType = STUBFRAME_EXCEPTION; |
| 1125 | } |
| 1126 | else |
| 1127 | { |
| 1128 | resultType = STUBFRAME_INTERNALCALL; |
| 1129 | } |
| 1130 | break; |
| 1131 | |
| 1132 | default: |
| 1133 | UNREACHABLE(); |
| 1134 | break; |
| 1135 | } |
| 1136 | |
| 1137 | return resultType; |
| 1138 | } |
| 1139 | |
| 1140 | //--------------------------------------------------------------------------------------- |
| 1141 | // |
| 1142 | // This is just a simpler helper function to convert a REGDISPLAY to a CONTEXT. |
| 1143 | // |
| 1144 | // Arguments: |
| 1145 | // pRegDisp - the REGDISPLAY to be converted |
| 1146 | // pContext - the buffer for storing the converted CONTEXT |
| 1147 | // |
| 1148 | |
| 1149 | void DacDbiInterfaceImpl::UpdateContextFromRegDisp(REGDISPLAY * pRegDisp, |
| 1150 | T_CONTEXT * pContext) |
| 1151 | { |
| 1152 | #if defined(_TARGET_X86_) && !defined(WIN64EXCEPTIONS) |
| 1153 | // Do a partial copy first. |
| 1154 | pContext->ContextFlags = (CONTEXT_INTEGER | CONTEXT_CONTROL); |
| 1155 | |
| 1156 | pContext->Edi = *pRegDisp->GetEdiLocation(); |
| 1157 | pContext->Esi = *pRegDisp->GetEsiLocation(); |
| 1158 | pContext->Ebx = *pRegDisp->GetEbxLocation(); |
| 1159 | pContext->Ebp = *pRegDisp->GetEbpLocation(); |
| 1160 | pContext->Eax = *pRegDisp->GetEaxLocation(); |
| 1161 | pContext->Ecx = *pRegDisp->GetEcxLocation(); |
| 1162 | pContext->Edx = *pRegDisp->GetEdxLocation(); |
| 1163 | pContext->Esp = pRegDisp->SP; |
| 1164 | pContext->Eip = pRegDisp->ControlPC; |
| 1165 | |
| 1166 | // If we still have the pointer to the leaf CONTEXT, and the leaf CONTEXT is the same as the CONTEXT for |
| 1167 | // the current frame (i.e. the stackwalker is at the leaf frame), then we do a full copy. |
| 1168 | if ((pRegDisp->pContext != NULL) && |
| 1169 | (CompareControlRegisters(const_cast<const DT_CONTEXT *>(reinterpret_cast<DT_CONTEXT *>(pContext)), |
| 1170 | const_cast<const DT_CONTEXT *>(reinterpret_cast<DT_CONTEXT *>(pRegDisp->pContext))))) |
| 1171 | { |
| 1172 | *pContext = *pRegDisp->pContext; |
| 1173 | } |
| 1174 | #else // _TARGET_X86_ && !WIN64EXCEPTIONS |
| 1175 | *pContext = *pRegDisp->pCurrentContext; |
| 1176 | #endif // !_TARGET_X86_ || WIN64EXCEPTIONS |
| 1177 | } |
| 1178 | |
| 1179 | //--------------------------------------------------------------------------------------- |
| 1180 | // |
| 1181 | // Given the REGDISPLAY of a stack frame for one of the redirect functions, retrieve the original CONTEXT |
| 1182 | // before the thread redirection. |
| 1183 | // |
| 1184 | // Arguments: |
| 1185 | // pRD - the REGDISPLAY of the stack frame in question |
| 1186 | // |
| 1187 | // Return Value: |
| 1188 | // Return the original CONTEXT before the thread got redirected. |
| 1189 | // |
| 1190 | // Assumptions: |
| 1191 | // The caller has checked that the REGDISPLAY is indeed for one of the redirect functions. |
| 1192 | // |
| 1193 | |
| 1194 | PTR_CONTEXT DacDbiInterfaceImpl::RetrieveHijackedContext(REGDISPLAY * pRD) |
| 1195 | { |
| 1196 | CORDB_ADDRESS ContextPointerAddr = NULL; |
| 1197 | |
| 1198 | TADDR controlPC = PCODEToPINSTR(GetControlPC(pRD)); |
| 1199 | |
| 1200 | // Check which thread redirection mechanism is used. |
| 1201 | if (g_pDebugger->m_rgHijackFunction[Debugger::kUnhandledException].IsInRange(controlPC)) |
| 1202 | { |
| 1203 | // The thread is redirected because of an unhandled exception. |
| 1204 | |
| 1205 | // The CONTEXT pointer is the last thing pushed onto the stack. |
| 1206 | // So just read the stack slot at ESP. That will be the TADDR to the CONTEXT. |
| 1207 | ContextPointerAddr = PTR_TO_CORDB_ADDRESS(GetRegdisplaySP(pRD)); |
| 1208 | |
| 1209 | // Read the CONTEXT from OOP. |
| 1210 | return *dac_cast<PTR_PTR_CONTEXT>((TADDR)ContextPointerAddr); |
| 1211 | } |
| 1212 | else |
| 1213 | { |
| 1214 | // The thread is redirected by the EE via code:Thread::RedirectThreadAtHandledJITCase. |
| 1215 | |
| 1216 | // Convert the REGDISPLAY to a CONTEXT; |
| 1217 | T_CONTEXT * pContext = NULL; |
| 1218 | |
| 1219 | #if defined(_TARGET_X86_) |
| 1220 | T_CONTEXT ctx; |
| 1221 | pContext = &ctx; |
| 1222 | UpdateContextFromRegDisp(pRD, pContext); |
| 1223 | #else |
| 1224 | pContext = pRD->pCurrentContext; |
| 1225 | #endif |
| 1226 | |
| 1227 | // Retrieve the original CONTEXT. |
| 1228 | return GetCONTEXTFromRedirectedStubStackFrame(pContext); |
| 1229 | } |
| 1230 | } |
| 1231 | |
| 1232 | //--------------------------------------------------------------------------------------- |
| 1233 | // |
| 1234 | // Unwind special native stack frame which the runtime knows how to unwind. |
| 1235 | // |
| 1236 | // Arguments: |
| 1237 | // pIter - the StackFrameIterator we are currently using to walk the stack |
| 1238 | // |
| 1239 | // Return Value: |
| 1240 | // Return TRUE if there are more frames to walk, i.e. if we are NOT at the end of the stack. |
| 1241 | // |
| 1242 | // Assumptions: |
| 1243 | // pIter is currently stopped at a special stub which the runtime knows how to unwind. |
| 1244 | // |
| 1245 | // Notes: |
| 1246 | // * Refer to code:DacDbiInterfaceImpl::IsRuntimeUnwindableStub to see how we determine whether a control |
| 1247 | // PC is in a runtime-unwindable stub |
| 1248 | // |
| 1249 | |
| 1250 | BOOL DacDbiInterfaceImpl::UnwindRuntimeStackFrame(StackFrameIterator * pIter) |
| 1251 | { |
| 1252 | _ASSERTE(IsRuntimeUnwindableStub(GetControlPC(pIter->m_crawl.GetRegisterSet()))); |
| 1253 | |
| 1254 | T_CONTEXT * pContext = NULL; |
| 1255 | REGDISPLAY * pRD = pIter->m_crawl.GetRegisterSet(); |
| 1256 | |
| 1257 | // |
| 1258 | // Retrieve the CONTEXT to unwind to and unwind the REGDISPLAY. |
| 1259 | // |
| 1260 | pContext = RetrieveHijackedContext(pRD); |
| 1261 | |
| 1262 | FillRegDisplay(pRD, pContext); |
| 1263 | |
| 1264 | // Update the StackFrameIterator. |
| 1265 | BOOL fSuccess = pIter->ResetRegDisp(pRD, true); |
| 1266 | if (!fSuccess) |
| 1267 | { |
| 1268 | // ResetRegDisp() may fail for the same reason Init() may fail, i.e. |
| 1269 | // because the stackwalker tries to unwind one frame ahead of time, |
| 1270 | // or because the stackwalker needs to filter out some frames based on the stackwalk flags. |
| 1271 | ThrowHR(E_FAIL); |
| 1272 | } |
| 1273 | |
| 1274 | // Currently we only unwind the hijack function, which will never be the last stack frame. |
| 1275 | // So return TRUE to indicate that this is not the end of stack. |
| 1276 | return TRUE; |
| 1277 | } |
| 1278 | |
| 1279 | //--------------------------------------------------------------------------------------- |
| 1280 | // |
| 1281 | // To aid in doing the stack walk, the shim needs to know if either TS_SyncSuspended or |
| 1282 | // TS_Hijacked is set on a given thread. This DAC helper provides that access. |
| 1283 | // |
| 1284 | // Arguments: |
| 1285 | // vmThread - Thread on which to check the TS_SyncSuspended & TS_Hijacked states |
| 1286 | // |
| 1287 | // Return Value: |
| 1288 | // Return true iff TS_SyncSuspended or TS_Hijacked is set on the specified thread. |
| 1289 | // |
| 1290 | |
| 1291 | bool DacDbiInterfaceImpl::IsThreadSuspendedOrHijacked(VMPTR_Thread vmThread) |
| 1292 | { |
| 1293 | DD_ENTER_MAY_THROW; |
| 1294 | |
| 1295 | Thread * pThread = vmThread.GetDacPtr(); |
| 1296 | Thread::ThreadState ts = pThread->GetSnapshotState(); |
| 1297 | if ((ts & Thread::TS_SyncSuspended) != 0) |
| 1298 | { |
| 1299 | return true; |
| 1300 | } |
| 1301 | |
| 1302 | #ifdef FEATURE_HIJACK |
| 1303 | if ((ts & Thread::TS_Hijacked) != 0) |
| 1304 | { |
| 1305 | return true; |
| 1306 | } |
| 1307 | #endif |
| 1308 | |
| 1309 | return false; |
| 1310 | } |
| 1311 | |